
1

Active Harmonic Filtering with Selective
Overcurrent Limitation for Grid-Forming VSCs:
Stability Analysis and Experimental Validation
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Abstract—The high penetration of renewable energy sources
(RES) interfaced with power electronics together with new non-
linear loads pose new challenges in the grid operation. In
fact, power systems with reduced inertia and high harmonic
distortion will be common in a near future. Recently, the
grid-forming operation of voltage source converters (VSCs) has
emerged to address these challenges, mimicking the contribution
of synchronous generators to the system inertia. In addition,
these grid-connected VSCs can be used at the same time for
reducing the harmonic distortion by applying active filtering
techniques. However, these harmonic compensation algorithms
can generate VSC overloading. This paper proposes a method
for dynamically adjusting the individual virtual impedance of the
filtered harmonics to prevent the power converter overcurrent.
For this purpose, the value of each harmonic virtual impedance
is modified according to a priority which can be set by the final
user according to the established power quality standard. The
paper includes a theoretical stability analysis of the controller
and experimental results to validate the proposed algorithm.

Index Terms—Power quality, converter interfaced generators,
active harmonic mitigation, renewable energy sources, grid-
forming inverters, stability analysis, overcurrent protection.

I. INTRODUCTION

The future of power generation will be dominated by renew-
able energy sources (RES). In this way, the conventional syn-
chronous generators will be replaced with RES power plants
which will be connected to the grid using converter interfaced
generators (CIGs). This scenario may lead to new technical
challenges, where larger frequency and voltage deviations are
expected due to the reduced system inertia [1], affecting the
secure and reliable operation of the power system [2]. This
change comes along with a transition in the demand side,
where traditional electro-mechanical loads are being replaced
by power electronics such as variable speed drives, power
supplies or lighting devices. These non-linear loads improve
the performance, efficiency and flexibility but, at the same
time, introduce harmonic currents. This has a negative effect
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on the distribution system causing, among others, distorted
nodal voltages [3] and transformer overheating [4]. The impact
on the power quality is particularly high in low voltage
networks and microgrids, where the penetration of non-linear
loads is steadily increasing within industrial, commercial and
domestic consumers [5].

With this regard, CIGs based on voltage source converters
(VSCs) composed of switched devices such as insulated-gate
bipolar transistors (IGBTs) may contribute to address these
new challenges due to the inherent flexibility provided by their
control algorithms.

On the one hand, regarding the reduced inertia of modern
power systems, grid-forming operation of CIGs has recently
emerged to support and control the system frequency and
voltage [6]. For doing so, it is required to either operate
below the RES maximum power point or include an energy
storage system [7]. Several ways to implement the grid-
forming mode can be found in the specialized literature [8]:
droop controllers for active and reactive power sharing [9],
advanced algorithms mimicking the dynamic performance of
a synchronous generator [10] or virtual oscillators [11]. All
of them provide frequency and voltage control and they can
operate in both islanded and grid-connected systems. This is
because they do not require a phase-locked loop (PLL) or
other frequency estimation method to synchronize with the
system they are connected to. In general, the control structure
of a grid-forming VSC consists of a hierarchical controller
composed of an outer and an inner control loop, OCL and ICL
respectively [12]. The OCL is in charge of the synchronization
and the computation of the frequency and voltage references
for the ICL. Meanwhile, the ICL can be implemented in
different ways: open loop [13], single current controller [14],
[15], single voltage controller [16] and cascade voltage and
current controllers [17]. The main drawback of the three first
algorithms is the lack of controllability of the capacitor voltage
and/or inductor current which is critical in abnormal operation
conditions with a fast dynamics such as short-circuit faults.
With this regard, the use of cascade controllers guarantees
that the VSC voltage and current remain within the technical
limits. This approach, however, is extremely sensitive to the
characteristics of the Point of Interconnection (POI), i.e. short-
circuit power and R/X ratio [8]. In addition, the voltage
control loop may become unstable because of the feedforward
terms of the current controller [18]. This drawback can be
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overcome using an ICL based just on a current controller.
In this case, the voltage control is included within the OCL
through primary and secondary control loops [19]. Evidently,
this voltage control has a slower dynamic response than those
strategies with a voltage control within the ICL, but enough
to maintain the voltages within technical limits under normal
operation conditions. Moreover, these controllers are also able
to limit the VSC current in case of short-circuit faults [20],
[21].

On the other hand, with respect to the harmonic mitigation,
passive filters [22], active power filters [23] or hybrid filters
can be installed nearby large non-linear loads at the cost of
additional investments. Alternatively, CIGs with proper control
actions may help to reduce the harmonic distortion [24]. A
set of resonant controllers tuned to the targeted harmonics
can be added to the ICL either in the current or voltage
control loop. In the first case, the harmonic current reference
is computed using a virtual harmonic admittance and the POI
harmonic voltage [25]. This virtual harmonic admittance is
dynamically modified until the reference harmonic voltage
is reached, as long as the VSC rated current is not exceed.
This is an indirect method of harmonic voltage compensation
since the virtual admittance is modified following a trial
and error process. For this reason, this methodology is not
suitable in case of rapidly time-varying non-linear loads. As
an alternative, the harmonic compensation can be integrated
in the ICL voltage control loop by adding to the fundamental
frequency controller a set of cascade resonant controllers tuned
at the targeted harmonics [26], [27]. In this way, any harmonic
voltage reference can be directly tracked. The harmonic volt-
age references can be computed using a virtual impedance
approach to improve the power sharing and the selective
voltage harmonic compensation [28]. Independently of the im-
plemented harmonic controller, the system harmonic stability
needs to be ensured. For doing so, different approaches have
been previously proposed ranging from simplified Norton-
based impedance model [29] to sophisticated ones based on
state-space models [30]. The selection of the stability analysis
tool depends on several factors: available information, main
goal of the analysis (design-oriented process, identification of
dynamic modes, participation factors, modularity, scalability,
computational effort, etc.). A comprehensive overview of this
topic with the pros and cons of each method can be found in
[31].

Nevertheless, it is still possible to improve the design
process and the performance of the existing harmonic con-
trollers. Particularly, it is required to compute the resonant
controller parameters to guarantee the controller stability and
an adequate tracking of the harmonic references independently
of the network characteristics. Furthermore, VSC operational
limits, i.e. rated current and voltage, may be reached during
the provision of the active harmonic filtering (AHF) service. In
the existing literature, there are several current-limiting control
strategies based on whether the total output current magnitude
of the grid-forming VSC is directly or indirectly controlled
[32]. Basically, these are classified in three categories: (i) di-
rect current-limiting control [33], (ii) indirect current-limiting
control [34] as virtual impedance current limiter [35] and, (iii)

hybrid current-limiting control [36]. Regardless of the method
used to limit the current, all of them aim to limit the total
current, without discriminating between the different current
components of this current. With this regard, the limitation of
the AHF capability in case of VSC overload has been previ-
ously explored in current controllers for active power filters:
saturation approaches [37], [38], virtual impedance techniques
[39] and optimization algorithms [40]. However, the limitation
of the AHF capability in case of VSC overcurrent with direct
harmonic voltage tracking remains unexplored.

The main objective of this paper is to provide a stable
AHF functionality to grid-forming VSCs by adding a direct
harmonic voltage controller with selective current limitation
in case of overloading. The harmonic voltage reference is set
by means of an adaptive virtual harmonic impedance which is
modified to maintain the current below its rated value. Each
virtual harmonic impedance can be calculated independently to
reflect the relative importance of each harmonic according to
the established power quality standard. The proposed strategy
can be implemented at any CIG, since it does not require
adding new measurement devices or hardware components.
Moreover, its application is of particular interest in CIGs
within low voltage networks and microgrids, where the non-
linear loads may deteriorate the power quality.

Finally, it is important to highlight that this paper has the
following contributions with respect to [41]:

• Evaluation of the proposed solution in grid-connected,
instead of islanded, grid-forming VSCs.

• OCL based on a virtual synchronous generator (VSG)
which allows the synchronization with the grid and iner-
tial response.

• Stability analysis of the grid-forming VSC controller with
AHF and selective overcurrent protection resorting to a
small-signal analysis based on state-space equations.

• Computation of the virtual harmonic impedance to pre-
vent VSC overloading according to the priority estab-
lished in the EN 50160 standard [42] for each targeted
harmonic.

The rest of the paper is organized as follows. Section II
presents the state-space modelling of the grid-forming VSC
including the system dynamics: VSG, AHF and selective
overloading protection. Section III outlines a small-signal
stability analysis to evaluate the influence and stability range of
the controller parameters. From this analysis, the final values
of the controller gains are determined. Section IV provides
the experimental validation of the proposal. Finally, the paper
closes with the main conclusions.

II. STATE-SPACE MODELLING OF THE GRID-FORMING
VSC

This section outlines the state-space model of a grid-
connected VSC providing grid-forming capability with AHF
and selective overcurrent protection. The proposed control al-
gorithm is shown in Fig. 1, where all the parameters, variables
and controller gains used along paper are specified. The state-
space model is composed of four main blocks analyzed in
the following subsections: (i) the grid-connected VSC model,
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Fig. 1. Proposed controller for the grid–forming VSCs with AHF and overcurrent protection.

(ii) the main controller of the grid-forming VSC implemented
through a VSG, (iii) the AHF functionality through direct
harmonic voltage control, and (iv) the selective harmonic
overcurrent protection.

A. Grid-Connected VSC model

The grid-connected VSC is a three-phase three-wire device
connected to the grid through an LCL coupling filter, which
also has a physical damping resistor incorporated in series with
the capacitor. The grid is modeled as an AC voltage source
with an series connected inductive impedance (Rg and Lg).
The differential equations of the grid-connected VSC in the
dq rotating reference frame, which is synchronized with the
VSG angle, θvsg , are as follows:

vtd − vmd = Rtitd + Lt
ditd
dt

− Ltωvsgitq,

vtq − vmq = Rtitq + Lt
ditq
dt

+ Ltωvsgitd,

(1)


vmd − vsd = Rsisd + Ls

disd
dt

− Lsωvsgisq,

vmq − vsq = Rsisq + Ls
disq
dt

+ Lsωvsgisd,

(2)

{
vmd = vcd +Rd(itd − isd),

vmq = vcq +Rd(itq − isq),
(3)


Cf

dvcd
dt

− Cfωvsgvcq = (itd − isd),

Cf
dvcq
dt

+ Cfωvsgvcd = (itq − isq),

(4)


vsd − vgd = Rgisd + Lg

disd
dt

− Lgωvsgisq,

vsq − vgq = Rgisq + Lg
disq
dt

+ Lgωvsgisd,

(5)

where Lt and Ls are the inverter-side and the grid-side filter
inductances respectively, Rt and Rs are their corresponding

resistances, Cf is the filter capacitance, Rd is the damping re-
sistance, vt,dq = [vtd, vtq] is the voltage at the VSC terminals,
vm,dq = [vmd, vmq] is the voltage across the capacitor and
damping resistor, vc,dq = [vcd, vcq] is the capacitor voltage,
vs,dq = [vsd, vsq] is the POI voltage, vg,dq = [vgd, vgq] is
the source voltage of the grid, it,dq = [itd, itq] is the inverter-
side inductor current, is,dq = [isd, isq] is the grid-side inductor
current, and ωvsg is the VSG angular frequency.

Considering the equations above, the model of the grid-
connected VSC adds six state variables xf to the state-space
equations:

xf = [itd, itq, isd, isq, vcd, vcq]. (6)

B. Virtual Synchronous Generator

The selected VSG model for providing grid-forming capa-
bility is the one presented in [15], which is composed of an
OCL and an ICL.

The OCL consists of two parallel proportional-integral (PI)
controllers for the active and reactive power, as shown in Fig.
1. The active power controller enables the synchronization
with the grid by modifying the virtual rotor angle, θvsg . The
reactive power controller computes the amplitude of the virtual
electromotive force, E. Therefore, the OCL equations are the
following: 

ωvsg = kpp
dξp
dt

+ kipξp + ω0,

dθvsg
dt

= ωvsg,

dξp
dt

= p∗ − p,

(7)


E = kpq

dξq
dt

+ kiqξq + E0,

dξq
dt

= q∗ − q,

(8)
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Fig. 2. Grid voltage VSG electromotive force in the αβ and dq frames.

where ξp is the integral of the active power error, p is the
POI active power, p⋆ is the reference active power, ω0 is the
rated frequency, kpp and kip are the proportional and integral
gains of the PI active power controller, ξq is the integral of
the reactive power error, q is the POI reactive power, q⋆ is the
reference reactive power, E0 is the rated electromotive force,
and kpq and kiq are the proportional and integral gains of the
PI reactive power controller.

The POI active and reactive powers, p and q, are calculated
in dq axes as: 

p =
3

2
(vsdisd + vsqisq),

q =
3

2
(vsqisd − vsdisq).

(9)

The electromotive force lies along the q axis as shown
in Fig. 2. This leads to an electromotive force in the dq
coordinates always equal to edq = [0,−E]. On the other hand,
it is considered that the grid voltage rotates at the nominal
frequency, ω0. This means that the grid voltage is considered
a perturbation not adding any dynamic to the system [43].
Therefore, it can be defined a phase shift, ψ, between the grid
voltage and the electromotive force, as shown in Fig. 2, which
evolves according to the VSG angle dynamics:ψ = θg − θvsg,

dψ

dt
= ω0 −

dθvsg
dt

.
(10)

This approach allows to replace θvsg by ψ in (7), maintaining
the VSG dynamics but adding the grid angular frequency ω0

in the model.
The ICL consists of a single PI current controller imple-

mented in dq coordinates. The current references are obtained
from the electromotive force, edq , the POI voltage, vs,dq , and
a virtual admittance, Yv = Gv − jBv . Additionally, a low-
pass filter (LPF) is applied to these reference currents before
introducing them into the current controller with the aim of
providing references with the lowest possible harmonic con-
tent. The current references, ivsgsd and ivsgsq , can be formulated
as follows:{

ivsgsd = Gv(ed − vsd) +Bv(eq − vsq),

ivsgsq = −Bv(ed − vsd) +Gv(eq − vsq),
(11)


ivsgsd = τlpf

di⋆sd
dt

+ i⋆sd,

ivsgsq = τlpf
di⋆sq
dt

+ i⋆sq,

(12)

where τlpf is the LPF time constant and i⋆s,dq = [i⋆sd, i
⋆
sq] is

filtered reference current.
Finally, the PI current controller equations, including the

cross-coupling cancellation and feed-forward terms are:

vtd = kpi
dξid
dt

+ kiiξid − (Lt + Ls)ωvsgisq + vsd,

vtq = kpi
dξiq
dt

+ kiiξiq + (Lt + Ls)ωvsgisd + vsq,

dξid
dt

= i⋆sd − isd,

dξiq
dt

= i⋆sq − isq,

(13)

where ξid and ξiq are the integral of the current errors in dq
axis and kpi and kii are the proportional and integral gains of
the PI current controller respectively.

Considering (7)-(13), the model of the VSG control loops
adds seven new state variables to the state-space equations:

xvsg = [ψ, ξp, ξq, i
⋆
sd, i

⋆
sq, ξid, ξiq]. (14)

C. Active Harmonic Filtering
The harmonic voltage control is provided by including a set

of resonant controllers to each of the targeted harmonics. The
objective is to track a harmonic voltage reference in the αβ do-
main, v⋆

h,αβ = [v⋆hα, v
⋆
hβ ], which corresponds to the required

POI harmonic voltage. Note that the resonant controllers are
implemented in the αβ coordinates, rather than in the dq
frame, since it is necessary to compensate each harmonic in its
corresponding sequence. These resonant controllers generate a
new current reference, i⋆h,αβ = [i⋆hα, i

⋆
hβ ], which is converted

to the dq-axes before being added to the VSG fundamental
reference current (13), as shown in Fig. 1.

The resonant controllers in the αβ reference frame can be
formulated in the Laplace domain as:

i⋆hα(s)

ϵhα(s)
=

krhs

s2 + 2δhωhs+ ω2
h

,

i⋆hβ(s)

ϵhβ(s)
=

krhs

s2 + 2δhωhs+ ω2
h

,

ϵhα(s) = v⋆hα(s)− vsα(s),

ϵhβ(s) = v⋆hβ(s)− vsβ(s),

(15)

where ϵh,αβ = [ϵhα, ϵhβ ] is the harmonic voltage error,
vs,αβ = [vsα, vsβ ] is the POI harmonic voltage while krh, δh
and ωh are the gain, damping and tuned harmonic frequency
of the h-th resonant controller. However, it is required to
transform (15) to the dq coordinates, where the grid-connected
VSC and VSG models have been derived:

i⋆hd(s)

ϵhd(s)
=

krh(s+ jωvsg)

(s+ jωvsg)2 + 2δhωh(s+ jωvsg) + ω2
h

,

i⋆hq(s)

ϵhq(s)
=

krh(s+ jωvsg)

(s+ jωvsg)2 + 2δhωh(s+ jωvsg) + ω2
h

,

ϵhd(s) = v⋆hd(s)− vsd(s),

ϵhq(s) = v⋆hq(s)− vsq(s),

(16)
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where ϵh,dq = [ϵhd, ϵhq] is the harmonic voltage error,
i⋆h,dq = [i⋆hd, i

⋆
hq] is the reference harmonic current and

v⋆
h,dq = [v⋆hd, v

⋆
hq] is the reference harmonic voltage. Finally,

the time-domain formulation of (16) is as follows:
di⋆hd
dt

= krhϵhd − (2δhωh + jωvsg)i
⋆
h,d − ω2

hγhd,

di⋆hq
dt

= krhϵhq − (2δhωh + jωvsg)i
⋆
hq − ω2

hγhq,

(17)


dγhd
dt

= i⋆hd − jωvsgγhd,

dγhq
dt

= i⋆hq − jωvsgγhq,

(18)

where γh,dq = [γhd, γhq] is a new state variable representing
the integral of i⋆h,αβ in the dq reference frame: γh,dq(s) =
(sjωvsg)

−1i⋆h,dq(s).
The reference harmonic currents i⋆h,dq are added to the pre-

viously computed VSG reference current, i′dq = i⋆s,dq + i⋆h,dq ,
which is the input of the PI current controller. Therefore, (13)
is reformulated as: 

dξid
dt

= i′sd − isd,

dξiq
dt

= i′sq − isq.

(19)

Note that the perfect tracking of the reference harmonic
currents i⋆h,dq requires the use of resonant controllers tuned for
each harmonic, like the ones used for the harmonic voltages.
However, it is also possible to apply just a regular PI controller
which, along with the resonant voltage controllers, provides a
high bandwith to track the reference harmonic currents. In
this manner, the computational cost of the AHF functionality
is considerably reduced.

The harmonic voltage control introduces four new differen-
tial equations (17)-(18) per each targeted harmonic h and their
corresponding state variables:

xh = [i⋆hd, i
⋆
hq, γhd, γhq]. (20)

The performance analysis of the AHF can be alternatively
evaluated through a simplified control model in the frequency
domain. This type of models allow a fast interpretation of
the impact of the resonant controllers. However, they neglect
some dynamics that can be critical for the grid-forming VSC
stability. The simplified control model of the AHF can be
found in the Appendix A.

D. Selective Harmonic Overcurrent Protection
The harmonic voltage references v⋆

h,αβ are set to zero by
default in order to achieve a perfectly sinusoidal POI voltage.
Ideal resonant controllers guarantee null harmonic voltages
thanks to the extra harmonic current injection i⋆h,αβ . This,
however, may cause VSC overloading if these current terms
are not limited. To avoid this situation, it is proposed to add
an algebraic virtual harmonic impedance, Zh = Rh + jXh,
which modifies the default harmonic voltage reference in the
dq reference frame as:{

v⋆hd = −Rhisd +Xhisq,

v⋆hq = −Xhisd −Rhisq.
(21)

TABLE I
MAXIMUM AMPLITUDE OF THE HARMONIC VOLTAGES ALLOWED IN THE

EN 50160 STANDARD AND VALUE OF THE WEIGHTING FACTORS.

Harmonic order Amplitude Ah (%) σh (p.u.)
2 2.0 4.0

3, 7 5.0 10.0
4 1.0 2.0
5 6.0 12.0

6, 8, 10, 12 0.5 1.0
9 1.5 3.0
11 3.5 7.0
13 3.0 6.0

The parameters, Rh and Xh, can be independently defined for
each targeted h-th harmonic, according to the limits imposed
in the existing grid code. Larger virtual harmonic impedances
can be related to harmonics with higher permissible limits. For
doing so, it is proposed to use different harmonic weighting
factors, σh, to define the virtual harmonic impedances with
respect to a base value as:

Rh + jXh = σh(Rb + jLbωh), (22)

where Rb and Lb represent the base virtual harmonic resistance
and inductance respectively. In this way, it is possible to
selectively reduce the compensation of each h-th harmonic to
avoid VSC overcurrents.

Table I defines a set of harmonic weighting factors con-
sidering the voltage harmonic limits imposed by the standard
EN 50160. Note that the lowest harmonic weighting factor is
assigned to the harmonic with the lowest limit, i.e. the sixth
harmonic, while the other factors are scaled with respect their
relative amplitudes Ah:

σh =
Ah

A6
· σ6. (23)

The base virtual harmonic impedance is dynamically
adapted depending on the VSC current to prevent the overload.
Note that, according to (21) and (22), the base virtual harmonic
impedance could be computed as a function of the harmonic
voltages, harmonic currents and the fundamental current. This
work, however, proposes an adaptive approach where the base
virtual harmonic impedance is linearly increased whenever the
VSC current is greater than its rated current Irat. Considering
that the base virtual harmonic impedance is defined as a
piece-wise linear function, it is incorporated a hysteresis band
±HIs to limit the impedance variations. This band is centered
around a current, Ihys, below Irat, as shown in Fig. 3. If the
POI current, Is, is lower than Irat, the base virtual harmonic
impedance is set to zero, i.e. v⋆

h,αβ = 0, being possible to
achieve a sinusoidal POI voltage. However, if Is is greater
than Irat, the overcurrent limitation is activated by increasing
linearly the base virtual harmonic impedance as:

if Is > Irat →

{
Rb(t) = Rb(t− 1) +mr ·∆t,
Lb(t) = Lb(t− 1) +ml ·∆t,

(24)

where mr and ml are the variation rate of the base virtual
harmonic resistance and inductance respectively and ∆t is the
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Fig. 3. Overview of the hysteresis band used in the selective overload
reduction.

controller sample time. Therefore, the VSC current diminishes,
because of the harmonic current reduction, reaching Ihys.
From this point on, the base virtual harmonic impedance
remains constant. As soon as the VSC current drops below
the threshold Ihys−HIs , the base virtual harmonic impedance
is reduced. This leads to an increase of the injected current
harmonic currents. If the VSC current reaches Ihys and the
base virtual harmonic impedance is not null, the VSC current
is limited to this value, as shown in Fig. 3. In the case of
reaching Ihys but with a null base virtual harmonic impedance,
it is allowed to increase the VSC current above Ihys as long
as Irat is not exceeded.

The impact that the components of the base virtual harmonic
impedance, Rb and Lb, has on the control algorithm is
addressed in section III.

The differential equations of the four previous subsections
(1)-(23) can be gathered into a unique state-space model which
integrates the system and control dynamics:

ẋ = Ax+Bu,

x = [xf ,xvsg,xh],

u = [p⋆, q⋆, Rb, Lb].

(25)

III. SMALL-SIGNAL ANALYSIS

The aim of this section is to evaluate the stability and
dynamic performance of the proposed controller. First, a pre-
liminary computation of the controller gains according to state-
of-the-art methods is carried out. Then, the non-linear state-
space model of the system presented in the previous section
is linearized around an equilibrium point to evaluate their
eigenvalues. In addition, the stability range of each control
parameter is determined to set the final control gains.

A. Preliminary Computation of the Controller gains

This subsection proposes a preliminary computation of the
controller gains shown in Fig. 1:
VSG Outer Control Loop. The active power control loop is
based on a PI controller. The integral gain, kip, is calculated to

obtain a given inertial response, while the proportional gain,
kpp, is computed depending on the required damping factor.
These gains are computed according to [15]:

kip =
1

2H
; kpp =

√
8 (Xv + (Lt + Ls)ω0)

3E0Vg
kip, (26)

where H is the inertia constant, Vg is the peak value of the grid
voltage, and Xv = 1/Yv is the virtual reactance. Similarly, the
gains of the reactive power control loop are set as [7]:

kpq = 0.1
Vg
Sn

; kiq = 0.1
Vg
Sn
, (27)

where Sn is the rated power of the VSC.
VSG Inner Control Loop. The virtual admittance Yv is
defined as a pure inductive impedance and set to a 10% of
the VSC base impedance, whereas the time constant of the
LPF, τlpf , is set to 1.6 ms [7]. The proportional and integral
gains of the current control loop are computed according to
[44] as:

kpi =
Lt + Ls

τi
; kii =

Rt +Rs

τi
, (28)

where τi is the time constant of the current controller. The
value of τi is set 10 times higher than the PWM switching
period to neglect the PWM dynamics in the design of the
current controller.
Active Harmonic Filtering. The resonant gains and the damp-
ing term of the resonant controllers are initially calculated
according to [45]:

τv =

√
(tan(Mp − π))2 + 1

ωc tan(Mp − π)
, (29a)

krh = −
C

n∑
h=1

(
(hω)2 − ω2

c

)
τvωc tan(Mp − π)

, (29b)

where Mp is the phase margin and ωc is the cutoff filter fre-
quency. These parameters are usually set to π/3 and a 20% of
the maximum compensated harmonic frequency respectively.
The base virtual harmonic impedance is initially set to zero
for obtaining a full voltage harmonic compensation at the POI.

Table II collects all these controller gains particularized for
the system detailed in Table III.

B. Linearization of the State-Space Model

The stability analysis is performed through a small-signal
model by linearizing the state-space equations around an equi-
librium point x0. This is obtained by solving (25) for ẋ = 0
and a given input vector u. The analysis has been carried out
considering the preliminary controller gains, detailed in Table
II, computed for a VSC characterized by Table III. The inputs
u have been set for a VSC injected power equal to 9 kW
and 4.5 kvar. Regarding the AHF functionality, the targeted
harmonics are 5th and 7th harmonics and with a null base
virtual harmonic impedance.

The system is linearized as follows:

ẋ =
∂A

∂x
|x0(x− x0), (30)
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TABLE II
PRELIMINARY, EVALUATED RANGE AND FINAL VALUES OF THE CONTROLLER GAINS.

Parameter Preliminary Range Final Parameter Preliminary Range Final
H (s) 5 [0.01, 20] 5 δ5 10−3 [0, 10−3] 10−3

kpp ( rad
sW

) 10−3 [10−4, 10−2] 10−3 δ7 10−3 [0, 10−3] 10−3

kpq ( V
W

) 0.0016 [10−4, 10−2] 0.0016 kr5 ( A
V

) 3.46 [1, 50] 8

kiq ( V
W

) 0.0016 [10−3, 10−1] 0.016 kr7 ( A
V

) 3.46 [1, 50] 8
Gv (S) 0 [0, 125] 0 Rb (Ω) 0 [0, 0.3] 0
Bv (S) 1.25 [0.125, 125] 1.25 Lb (µH) 0 [0, 150] 0

τlpf (ms) 1.6 [0.16, 3.2] 1.6 Rg (Ω) 0.04 [0, 1] 0.04
kpi (V

A
) 5 [1, 5] 5 Lg (mH) 0.74 [0, 2] 0.74

kii (V
A

) 157 [1.8, 157] 640

TABLE III
SYSTEM PARAMETERS USED IN THE STABILITY ANALYSIS AND

EXPERIMENTAL VALIDATION.

Parameter Final Parameter Final
Lt (mH) 2.5 Rd (Ω) 28
Rt (Ω) 0.08 Vg (V) 220

√
2

Ls (mH) 2.5 E0 (V) 220
√
2

Rs (Ω) 0.08 Cf (µF) 1
mr (Ω

s
) 0.025 ml (Ω

s
) 0

σ2 4 σ4 2
σ5 12 σ7 10

Ihys (A) 19 HIs (A) 1
Irat (A) 20 Sn (kVA) 13
kr2 ( A

V
) 4 δ2 10−3

kr4 ( A
V

) 4 δ4 10−3

leading to the small-signal model:

ẋ = A0x+B0u. (31)

The matrices A0 and B0 are the linearized version of A and
B respectively.

The system stability can be evaluated around the equilibrium
point by analyzing the eigenvalues of A0, which are shown
in Table IV for the preliminary values of the controller gains.
All the eigenvalues have a non-zero real part, meaning that
the system is linearized around an hyperbolic equilibrium
point. According to the Hartman-Grobman theorem, the sys-
tem is structurally stable, so the linearized system faithfully
represents the non-linear one in this equilibrium point [46].
It is worth noting that the AHF functionality introduces
non-conjugated eigenvalues. Particularly, the 5th harmonic
compensation is related to eigenvalues at +400π rad/s (λ18,
λ19) and −600π rad/s (λ16, λ17). Correspondingly, the 7th

harmonic introduces other two eigenvalues at +600π rad/s
(λ20, λ21) and −800π rad/s (λ15, λ16).

C. Sensitivity Analysis

This subsection evaluates the stability range of the system
using the small-signal model and considering the possible
variations of the controller gains and the grid impedance. For
this purpose, the evolution of the eigenvalues in the complex
plane are analyzed when these parameters are modified within
the range detailed in Table II. The results are represented using

TABLE IV
EIGENVALUES OF THE SYSTEM USING THE PRELIMINARY CONTROLLER

GAINS.

Eig. Value Eig. Value
λ1 −8361.7− j7711.0π λ12 −7959.8 + j7225.6π
λ2 −7959.8− j7225.6π λ13 −8361.7 + j7711.0π
λ3 −1059.1− j350.39π λ14 −3.1000− j799.92π
λ4 −533.75− j128.47π λ15 −3.6653− j799.70π
λ5 −47.818− j0.0016π λ16 −2.3759− j599.91π
λ6 −31.416− j0.0002π λ17 −2.7529− j599.60π
λ7 −5.8133− j0.0000 λ18 −2.0252 + j399.58π
λ8 −0.4388− j0.0000 λ19 −2.1765 + j399.88π
λ9 −31.416 + j0.0002π λ20 −3.3556 + j599.60π
λ10 −533.76 + j128.53π λ21 −2.9913 + j599.90π
λ11 −1060.0 + j350.51π

two plots focusing on the eigenvalues of the VSG dynamics,
left side, and the AHF functionality, right side, respectively.
The arrows within these plots indicate the evolution of the
eigenvalues with respect to the analyzed parameter.
VSG active power control loop: The integral gain kip is
inversely proportional to the inertia constant H according to
(26). It has been considered that H is within the interval
[0.01,20] s, with the results shown in the top left plot of Fig.
4. The system is unstable for very small values of the inertia
constant (H < 1 s). Larger H stabilizes the system, since
the real part of the eigenvalues gets reduced. Therefore, H
is adjusted to the required VSC inertial response but greater
than 1 s to guarantee the system stability. With respect to the
eigenvalues of the AHF, analyzed in the right top plot, these
are barely affected by this parameter variation. Regarding the
proportional gain kpp, the system stability is compromised if
it is increased as shown in the bottom left plot of Fig. 4. This
effect is further accentuated from kpp > 10−3 rad/(sW) to
kpp = 10−3, where a drastic damping reduction from 0.8 to an
almost null value is noticed in λ4 and λ10, both related to VSG
dynamics. The effect on the AHF eigenvalues is asymmetrical,
as depicted in the bottom right plot of Fig. 4. The eigenvalues
at negative frequencies are consistently damped, whereas those
at positive frequencies get progressively separated from each
other approaching to the imaginary axis.
VSG reactive power control loop: The effect of this control
loop in the small-signal analysis is usually neglected in the
literature as indicated in [47], [48]. Fig. 5, which shows
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Fig. 4. Evolution of the eigenvalues with respect to the variations of the
gains within the active power control loop: H ∈ [0.01, 20] s and kpp ∈
[10−4, 10−2].

Fig. 5. Evolution of the eigenvalues with respect to the variations of the
gains within the reactive power control loop:: kpq ∈ [10−4, 10−2] V/W and
kiq ∈ [10−3, 10−1] V/W.

the evolution of the eigenvalues as kpq and kiq increase,
reinforces this hypothesis. The proportional gain kpq has a
relevant impact on eigenvalues as its value increases, but it
does not threaten the system stability. Therefore, this gain is
selected according to the desired VSC reactive power injection
in case of a given POI voltage variation. On the other hand,
the integral gain kiq has practically no effect on the dynamics
as reflected at the bottom plot of the Fig. 5.
VSG virtual admittance: The effect of the virtual con-
ductance and susceptance are shown in Fig. 6. The virtual
conductance Gv has almost no effect on the system dynamics,
generating just a slight shift in the eigenvalues as its value
increases. In the case of Bv , a slight damping reduction
of most of the eigenvalues happens as its value decreases,
specially when it is too small. Considering that Gv has almost
no impact on the the system dynamics, the virtual admittance
is set as purely inductive Yv = −jBv .
VSG LPF time constant: A LPF time constant equal to zero,
i.e. controller without LPF, leads to an unstable system with
λ2,10 = 472.92± j10889π. The left plot of the Fig. 7 shows
that as τlpf increases the natural frequency of the eigenvalues
λ3, λ4, λ10 and λ11 are reduced through a constant-damping
path until reaching values only composed of negative real part.

Fig. 6. Evolution of the eigenvalues with respect to the variations the VSG
virtual admittance: Gv = [0, 125] S and Bv ∈ [0.125, 125] S.

Fig. 7. Evolution of the eigenvalues with respect to the variations of the LPF
time constant: τlpf ∈ [0.16, 3.2] ms (bandwith BWlpf ∈ [1000, 50] Hz).

With respect to eigenvalues λ2 and λ12, these are shifted to
the left increasing the stability of the system. Conversely, the
eigenvalues λ1 and λ13 are displaced to the right which can
lead to an unstable system. On the other hand, the eigenvalues
related to the AHF barely move to the left when the LPF
bandwidth decreases. From this analysis, and taking into
account that the objective of the LPF is to provide reference
currents with the lowest possible harmonic content without
affecting too much the dynamics of the current control loop,
the LPF time constant is set to τlpf = 1.6 ms.
VSG current controller: As shown in section III-A, the gains
of the PI current controller are limited by the minimum time
constant of 1 ms, so the maximum considered values are:
kpi = 5 and kii = 157. Figure 8 depicts the evolution of
the eigenvalues within the ranges of kpi and kii. The damping
of the VSG and AHF increases for large values of kpi. As
expected, the wider the PI controller bandwidth the better
system performance is obtained. In the case of kii, its effect is
not significant on the system stability. However, this parameter
depends on the resistance of the coupling filter as shown in
(28). This analysis assumes inductors with a quality factor
equal to 10, but it has to be considered that, in practice,
the resistance is prone to large variations (manufacturing
tolerances, temperature, material degradation, wiring, etc.).
For this reason, the final value of kii is tuned through some
experimental tests to obtain a closed-loop time constant of the
current controller τi = 1 ms.
Active harmonic filtering: As mentioned above, the AHF
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Fig. 8. Evolution of the eigenvalues with respect to the variations of the PI
current controller: kpi ∈ [1, 5] V/A and kii ∈ [1.8, 157] V/A.

Fig. 9. Evolution of the eigenvalues with respect to the variations of AHF
resonant controller: δh ∈ [0, 10−3] and krh ∈ [1, 50] A/V.

functionality is exclusively activated for 5th and 7th har-
monics. For the sake of simplicity, it has been considered
kr5 = kr7 = krh and δ5 = δ7 = δh. The increase of δh
increases the damping of the AHF functionality, as shown
in Fig. 9, compromising the AHF performance but without
any effect on the VSG dynamics. With this regard, the best
performance is achieved for δh = 0 but with the drawback of
a limited stability margin which mainly depends on exogenous
damping sources. Again, δh is a trade-off between providing
a large enough AHF capability with enough damping. On
the other hand, the resonant gain krh significantly affects
the VSG and AHF dynamics for values higher than 100.
Particularly, the natural frequency of the AHF eigenvalues
are largely affected, especially those corresponding to the
negative sequence. Therefore, it is recommended a low value
of krh with the aim that the AHF capability affects the VSG
performance as less as possible. Finally, it is worth noting that
the bandwidth of the harmonic voltage controller, involving the
cascade operation of the resonant and PI current controllers, is
2931.1 rad/s considering the final values of the controller gains
summarized in Table II. This controller bandwidth is enough
to mitigate 5th and 7th harmonic voltages without including
additional resonant controllers in the VSG current control.
Overcurrent protection: The effect on the stability of the

Fig. 10. Evolution of the eigenvalues with respect to the variations of the
base virtual harmonic impedance: Rb ∈ [0, 0.3]Ω and Lb ∈ [0, 0.15] mH.

Fig. 11. Evolution of the eigenvalues with respect to the grid impedance:
Rg ∈ [0, 1]Ω and Lg ∈ [0, 1] mH.

resistive and inductive terms of the base virtual harmonic
impedance are shown in Fig. 10. The VSG eigenvalues are
hardly affected, whereas the AHF eigenvalues change dif-
ferently with respect to the variations of Rb and Lb. The
resistance produces a left-side shift of the eigenvalues, increas-
ing the damping. Conversely, the inductive term leads to an
unstable system for higher values than Lb = 80µH . Therefore,
it is concluded that the base virtual harmonic impedance must
be just resistive.
Grid impedance: The grid impedance has been studied for
a wide interval of values of Rg and Lg . The higher the
resistance the higher damping of all the eigenvalues. Even with
a null value of Rg the system maintains stability. Nevertheless,
eigenvalues at average frequencies, λ3, λ4, λ10 and λ11, tend
to move to the right, so it is expected reaching instability for
extremely weak grids (e.g. islanded grids). Regarding Lg , the
eigenvalues are shifted to the imaginary axis as it is increased.
For values higher than 1 mH and a R/X ratio of 0.07 the system
becomes unstable.

Considering this sensitivity analysis, the final gains of the
controllers used in the experimental validation of the proposed
methodology are shown in Table II.
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Fig. 12. Main components and one-line diagram of the testbed used for the
experimental validation.

IV. EXPERIMENTAL VALIDATION

The experimental validation of the grid-forming VSC in-
cluding AHF with overload protection has been carried out
using a testbed with the one-line diagram shown at the bottom
of Fig. 12. This consists of a three-phase three-wire VSC
with a DC voltage source and connected through an LCL
filter to a low-voltage power grid. This grid is composed of
a controllable power source, being possible to add voltage
harmonics, and a series impedance. The controller gains and
relevant parameters of this experimental testbed are summa-
rized in the Table II and Table III respectively. The AHF is
exclusively activated for compensating the 2th, 4th, 5th and
7th harmonics. The experimental validation has been done
through steady-state and dynamic tests which are summarized
in the next subsections.

A. Steady-state Test Results

The AC controllable source has been adjusted to supply a
fundamental phase-to-neutral voltage of 220 V distorted with
the following harmonics: U2 = 6.9 V, U4 = 2.3 V, U5 = 22.7
V and U7 = 13.5 V. The active and reactive power references
of the grid-forming VSC have been set to 9 kW and 4.5 kvar.
Using this testbed configuration, three different VSC modes
have been tested:

• Test 1 (T1). No voltage harmonic compensation is ap-
plied.

• Test 2 (T2). The AHF capability for the 2nd, 4th, 5th

and 7th harmonics is activated but without overloading
protection.

• Test 3 (T3). The AHF functionality is enabled including
the proposed selective overload protection.

The instantaneous VSC voltages and currents, vs,abc and
is,abc, for these steady-state tests are shown in Fig. 13, whereas

Fig. 13. Experimental tests. Steady-state results: Top plot: Test 1, no AHF is
provided. Middle plot: Test 2, AHF is activated. Bottom plot: Test 3, AHF is
activated with overload protection (Rb = 0.0942Ω).
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Fig. 14. Experimental tests. Steady-state results: FFT of the voltages. Test 1,
no AHF is provided. Test 2, AHF is activated. Test 3, AHF is activated with
overload protection (Rb = 0.0942Ω).

their corresponding harmonic spectrum for the targeted har-
monics is detailed in Fig. 14 and Table V.

Test 1 is characterized by highly distorted POI voltages
which lead to distorted currents, since the current controller
uses the POI voltage to track the power references. Note that
the VSC current, Is, is below its rated value, Irat, since Test
1 is only focused on supplying the active and reactive power
reference without any harmonic compensation.

Test 2 evidences a remarkable improvement of the POI
voltage as shown in the middle plot of Fig. 13, Fig. 14
and Table V. Note that the 2nd, 4th, 5th and 7th harmonic
voltages are almost null and the THDV is reduced below a 2%.
Furthermore, it is relevant to note these low THDV evidences
that the rest of harmonic frequencies have not been excited by
the use of the harmonic resonant controllers. This harmonic
voltage improvement, however, is achieved at the cost of a
high VSC harmonic current which leads to the VSC overload
(106.05%).
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TABLE V
STEADY-STATE TESTS RESULTS: THD, 2nd , 4th , 5th , 7th HARMONICS,

VSC TOTAL CURRENT AND FUNDAMENTAL ACTIVE AND REACTIVE
POWERS.

Test T1 T2 T3
THDV [%] 8.88 1.76 4.42
V2 [%] 2.08 0.03 0.87
V4 [%] 2.31 0.03 0.10
V5 [%] 6.32 0.63 3.94
V7 [%] 5.33 0.15 1.51
THDI [%] 15.16 45.80 15.33
I2 [%] 17.18 43.52 32.29
I4 [%] 16.22 9.00 7.04
I5 [%] 26.07 81.31 52.51
I7 [%] 25.01 33.66 24.41
IRMS [A] 16.51 21.21 18.83

This situation can be fully prevented implementing the
proposed AHF functionality with selective overload protection,
evaluated in Test 3. With this regard, the POI voltage is more
distorted than this of Test 2, since the AHF controller increases
the harmonic voltage references with the aim of limiting the
harmonic current injection. For doing so, the virtual harmonic
base impedance is dynamically adjusted to limit the harmonic
current, reaching a final value of Rb = 0.0942Ω. Furthermore,
the selective harmonic limitation using σh is noticed by
comparing the harmonic voltages of Test 2 and Test 3 in
Table V and Fig. 14. Since the standard allows a greater
5th harmonic content, the AHF functionality imposes a higher
reduction of the 5th harmonic current injection compared to
the other targeted harmonics.

B. Dynamic Test Results

The purpose of this test is to show the dynamic performance
of the proposed AHF with selective overload protection. This
dynamic test has been done by modifying the harmonic volt-
ages of the programmable AC source: from 4.6 V to 6.9 V for
the 2nd harmonic, from 1.2 V to 2.3 V for the 4th harmonic,
from 16.1 V to 22.7 V for the 5th harmonic and from 9.2 V
to 13.5 V for the 7th harmonic at t = 7.5 s and returning
to the original values at t = 17.5 s. The active and reactive
VSC power references are set to 9 kW and 4.5 kvar, which
lead to scenario below the VSC rated current at the beginning
of the test. In this situation, the POI voltage harmonics are
almost null, as shown in the top plot of Fig. 15, thanks to the
injection of VSC harmonic currents. Due to the change of the
source harmonic voltages at t = 7.5 s, the AHF functionality
provides additional current harmonic injection to reduce the
POI voltage harmonics, as shown in the two top plots of Fig.
15. As a result, the VSC current overpasses its rated value and
the selective overload protection is activated by increasing the
base virtual harmonic resistance as depicted in the second to
last plot of Fig. 15. This linear increase is stopped when the
current reaches the current Ihys, set to 19 A, as previously
explained with the help of Fig. 3 and the base virtual harmonic
resistance remains constant up to t = 17.5 s. At this instant,
the sudden reduction of the POI voltage harmonics leads to a
reduction of the VSC current which overpasses the lower limit

Fig. 15. Experimental tests. From top to bottom: Harmonic voltages, harmonic
currents, RMS current Is, evolution of the virtual harmonic resistances and
active and reactive power for the fundamental component during the dynamic
test.

of the hysteresis band, Ihys−HIs . Therefore, the base virtual
harmonic resistance starts decreasing up to zero since the VSC
current remains below Ihys. Finally, the bottom plot of Fig. 15
shows the evolution of the average active and reactive powers
throughout the test. It is observed that these remains constant
in the setpoints regardless of the activation or deactivation of
the AHF selective overcurrent protection. This reflects that
limiting the provision of AHF to avoid VSC overcurrent does
not affect other functionalities such as the provision of active
and reactive power.

V. CONCLUSION

This paper has presented a selective current limitation
strategy to regulate the AHF capability of grid-forming VSCs
to prevent overload conditions. A harmonic voltage reference,
obtained as a function of the injected VSC current and a virtual
harmonic impedance, is fed to a set of resonant controllers
tuned to the targeted harmonic frequencies. The output of
these resonant controllers is added to the reference current
of the VSG current control loop. The value of the virtual
harmonic impedance for each harmonic is selected according
to its relative importance within the existing power quality
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standard, e.g. EN 50160. This allows to prioritize the reduction
of the VSC harmonic currents in overload conditions.

A sensitivity analysis based on the small-signal model of the
state-space equations has been done to evaluate the dynamic
performance and stability of the controller as well as the
influence of each controller gain. This analysis reflects that
the tuning of the proportional gain in the VSG active power
control loop, the proportional gain of the PI current controller,
the LPF of the current controller and the virtual harmonic
reactance in the overload protection is key to achieve an stable
system. As a matter of fact, this analysis reveals that the
suppression of the LPF and the use of the virtual harmonic
reactance may lead to system instability. Furthermore, this
analysis has evidenced that the proposed VSG with AHF
functionality is stable for a wide range of grid impedances.

The proposal has been validated in a laboratory testbed
through test cases dealing with steady-state and dynamic
conditions. The steady-state results show that the controller
is able to eliminate the targeted harmonic components within
the resonant controllers. In addition, the controller shows a
good dynamic response in transient conditions when sudden
changes in the grid harmonic voltages take place. With respect
to VSC overload situations, the virtual harmonic impedance
strategy has demonstrated to be an efficient methodology to
maintain the VSC currents within the permissible technical
limits without affecting the other functionalities of the grid-
forming VSC.

Future research lines will involve the analysis of unbalanced
scenarios with three-phase four-wire VSCs. In addition, this
local control strategy can be complemented with another
centralized or distributed controller in charge of optimizing
globally some network variable like harmonic distortion, im-
balance or power losses.
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APPENDIX
SIMPLIFIED MODEL OF THE AHF FUNCTIONALITY

The simplified model of the AHF functionality based on
transfer functions using the nomenclature of Fig. 1 is rep-
resented in Fig. A1. The terms R(s) and PI(s) represent
the transfer functions of the resonant controller within the
harmonic voltage controller and the PI controller of the current
control loop respectively:

R(s) =
krhs

s2 + 2δhωhs+ ω2
h

,

P I(s) =
kpis+ kii

s
.

The rest of the terms represents the different impedances
and admittances of the system Zt = Lts+Rt, Zs = Lss+Rs,
Ym = Cfs+Gd, Zg = Lgs+Rg . Note that the VSG dynamics
has been neglected, i.e. Ginv(s) = 1, since its much faster
than the analyzed AHF and current control loops. Therefore,
the open-loop transfer function GOL(s) of this model can be
computed as:

GOL(s)|vg=0 =
evs
vs

=
Ginv(s)PI(s)R(s)

ZtYmZp + Ze +Ginv(s)PI(s)

where Zp = Zs + Zg and Ze = Zt + Zs + Zg .

Fig. A2. Bode plot of the magnitude for the GOL(s) of the system.

The Bode diagram related to GOL(s) is shown in Fig. A2
particularized with the final controller gains and parameters
of Table II and Table III respectively. Note that the AHF
functionality has been applied just to the 6th harmonic, which
represents the negative sequence of the 5th harmonic and the
positive sequence of the 7th harmonic in the dq domain. As
reflected in the Bode diagram, the peak magnitude is located
at 300 Hz (6th harmonic) while the rest of frequencies have
a magnitude lower than -50dB. This means that the AHF
functionality only acts on the 6th harmonic without affecting
to the rest of frequencies of the system. This result is consistent
with the experimental results depicted in Fig. 14, where only
the harmonics tuned at the resonant controllers are mitigated
without affecting the rest of frequencies.

Fig. A1. Transfer function representation of the AHF functionality.


