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A B S T R A C T
The large-scale roll-out of smart meters allows the collection of a vast amount of fine-grained
electricity consumption data. Once analyzed, such data can enable cutting-edge data-driven
services to enhance power systems efficiency and sustainability. In this paper, a comprehensive
literature overview of the state-of-the-art distribution network-oriented applications employing
smart meter data is conducted and potential areas for future research are identified. The most
recent innovations are outlined and discussed with an emphasis on six key areas, namely load
forecasting, non-technical losses, asset management, power system planning, topology identi-
fication, and power system operational analysis. It is anticipated that energy retailers, service
providers and distribution system operators would find the taxonomy and related applications, as
assessed and presented in this study, helpful in identifying emerging technology trends regarding
smart meter data analytics.
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Highlights
• Comprehensive overview of distribution network applications employing smart meter data
• Literature review has been categorized into six key areas
• Discussion on future research areas
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DR Demand Response
DRESs Distributed Renewable Energy Sources
DSM Demand Side Management
DSO Distribution System Operator
DT Decision Tree
EV Electric Vehicle
GIS Geographic Information System
HEMS Home Energy Management System
HIF High Impedance Fault
HVAC Heating, Ventilation, and Air-Conditioning
IWF Inter-turn Winding Fault
LV Low-Voltage
MIP Mixed-Integer Programming
ML Machine Learning
MV Medium-Voltage
NILM Non-Intrusive Load Monitoring
NTLs Non-Technical Losses
OLTC On-Load Tap Change
PCA Principal Component Analysis
PV Photovoltaic
RTUs Remote Terminal Units
SM Smart Meter
SVM Support Vector Machine
TB Technical Brochure
TLs Technical Losses
WLS Weighted Least Squares
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1. Introduction
Digitalization is nowadays emerging as a necessity for energy utilities and companies globally. One of the most

important milestones of this transformation is the widespread adoption of smart meters (SMs). At its first step, SM
technology was limited to automated readings by the energy provider in order to simplify billing and lower the labor
expenses associated with on-site visits, similar to the preceding metering system, i.e., the automated meter reading
(AMR) technology. However, the vast amount of fine-grained SM data provides numerous benefits for all energy
stakeholders, e.g., distribution system operators (DSOs), retailers, consumers, and aggregators, by paving the way for
new energy services and data-driven business models.

A detailed overview of the current status and functions of SMs is presented in the technical brochure (TB)
“Utilization of data from smart meter system" [1]. This TB presents the results of a survey conducted by CIGRE
focusing on two key points. The first objective was to draw the general outline of the SM systems and their specifications
in various geographical regions. This includes SM measuring capabilities such as type of data (e.g., active/reactive
power, energy, voltage, current, etc.), measurement period, and transmission period as summarized in Table 1. The
second objective was to examine possible applications for the usage of SM data analytics to facilitate and enhance the
operation of distribution networks (DN); these included the reduction of labor costs, improvement of the accuracy
of energy measurements, reduction of non-technical losses (NTLs), and optimization of network operation and
maintenance.

In the literature, there is a number of research activities regarding the global SM deployment, seeking to exploit
and create added value from the collected data through SM data analytics. Detailed analyses and comprehensive
comparisons of these solutions are presented in relevant review articles [2, 3, 4]. Specifically, in [2], a consumer-
centric perspective of SM analytics is discussed focusing on energy consumption awareness, ambient assisted living,
consumption anomalies, load profiling, and demand-side flexibility. Similarly, in [3], end-user-oriented applications,
such as energy efficiency and home energy management systems (HEMS) are presented. Finally, in [4], an extensive
review of various SM applications is presented ranging from data-related concerns (cleaning and imputation of missing
data, data privacy, and compression) to customer characterization for personalized services. It is worth mentioning
that in [3] and [4], the potential exploitation of SM data for DN-oriented applications is also discussed. Nevertheless,
therein analysis considers a limited taxonomy of DN-oriented applications focusing mainly on NTLs detection, demand
forecasting, and demand side management (DSM).

From the above, it can be seen that these review articles are mostly related to SM applications for end-users
and/or consumers, without thoroughly assessing the newly emerging research studies on DN-oriented applications.
To this end, this paper aims to conduct a comprehensive overview regarding the applications enabled by using SM
data explicitly from the DN perspective. Besides commonly reviewed topics, e.g., forecasting and NTLs detection,
additional applications, such as impedance estimation, phase grouping, remote switching, and hosting capacity are
examined, among others.

In particular, over 110 research papers have been examined; the number of papers published in various mediums
is summarized in Fig. 1. In addition, in Fig. 2, the number of examined papers published per year is depicted.

Based on the outcome of the literature review, the various applications are grouped into six key categories, namely
load forecasting, NTLs detection, asset management, power system planning, topology identification, and power system
operation and analysis. These categories along with their corresponding sub-categories are presented in Fig. 3 and
thoroughly discussed in the following sections. A red asterisk beside an application indicates that a complex data-driven
model is required. On the contrary, no asterisk implies raw SM data calculations. A brief summary of the examined
literature per sub-category is analysed in Table 2.

The paper is structured as follows. In Section 2, applications regarding various types of forecasting, i.e., demand,
peak demand, and flexibility, are presented. Section 3 focuses on NTLs detection and, specifically, electricity theft,
whereas in Section 4, applications for asset management, such as outage management, remote switching, and fault
detection, are described. Section 5 discusses hosting capacity and operating envelopes as part of long-term and short-
term power system planning, and in Section 6, applications for topology identification by means of SM data are
presented. Section 7 describes the utilization of SM data in power system operation and analysis and, finally, Section
8, discusses future research areas and concludes the paper.
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Table 1
SM measurement capabilities per region [1].

Region Measurement Measurement
period

Transmission
period

Japan Wh 30 min 30 min

China, South Korea W, Wh, VAR,
VARh, V, I 15 min 15 min

Northern-Western Europe W, Wh, VAR,
VARh, V, I 1 s - 1 h 6 h, 1 d

Southern-Eastern Europe W, Wh, VAR,
VARh, V, I 1 s - 1 d 15 min, 1 d, 1

mo

Brazil, South Africa - 15 min, 30 min 1 h - 1 d
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IEEE Trans. Smart Grid
IEEE Trans. Power Syst.
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IEEE Trans. Instrum. Meas.
IEEE Access

Other IEEE journals
Appl.Energy

Electr. Power Syst. Res.
Energies

Energy and Buildings
Other journals

arXiv
IEEE conferences
Other conferences

Book chapter

Number of publications

Figure 1: Number of publications per journal/conference.

2. Load Forecasting
Load forecasting has gained significant attention in recent years as the energy sector has been highly affected by

various factors. In many countries, the COVID-19 pandemic led to reduction in energy demand, particularly in services
and industry. Furthermore, the reduced gas deliveries of 2022 have developed a gas supply crisis mainly in European
gas markets, causing them to diversify their source of energy imports.

Moreover, the unprecedented data availability, e.g., from SMs, remote terminal units (RTUs), and many other
measurement systems, and the great progress of artificial intelligence (AI) and machine learning (ML) paved the way
for advanced data analytics and techniques for load forecasting. In this section, three different types of forecasting are
discussed, namely demand forecasting, peak demand forecasting, and demand flexibility forecasting. The typical data
requirements for this category of applications are summarized in Table 3.
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Figure 3: Taxonomy of SM data analytics for DSOs.

2.1. Demand Forecasting
Demand forecasting is a useful tool in modern power systems to achieve supply-demand equilibrium, support

operations and planning processes and improve retailers decision-making about pricing, procurement, and hedging
[4].

SMs may assist DSOs and retailers to better understand and forecast the load of an individual house or building [4]
and can also improve forecasting accuracy at an aggregated level. However, forecasting at a more granular level, e.g.,
household, building, or neighborhood, is more challenging as the load timeseries are more volatile.
2.1.1. Household Level

SM data enable forecasting of individual houses or buildings allowing the extraction of useful information to
improve the aggregated forecast. Sparse coding [5], ML and deep learning (DL) [6, 7, 8, 9] approaches have been
investigated considering behavioral patterns [10] and socio-economic factors [11], e.g., number and age of occupants,
employment status, etc. The concept of “similarity" is widely used in many works, identifying similar days in historical
data of a household and using them to boost the accuracy based on the observation that individuals express their
patterns of energy consumption behavior at different times on different days [12, 13]. Similarly, spatio-temporal
approaches exploiting trends and interactions between data from a target house and the surrounding houses have also
been proposed [14]. Finally, bottom-up approaches for household-level forecasting have also been tested aiming to
predict the consumption of each appliance and aggregate the results [15, 16].
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Table 2
Summary of the Examined Literature.

Category Sub-category References

Load forecasting

Demand forecasting
Building level [5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16]
Aggregated level [17, 18, 19, 20]

Peak demand forecasting
Building level [21, 22, 23, 24]

Aggregated level [25]
Demand flexibility forecasting [26]

NTLs
Data-oriented [27, 28, 29, 30, 31, 32, 33, 34,

35, 36, 37]
Network-oriented [38, 39, 40, 41, 42, 43]

Hybrid [44, 45, 46, 47]

Asset management
Unplanned outage management [48, 49, 50, 51, 52]

Remote switching [53]
Fault detection [54, 55]

Planning
Hosting capacity [56, 57, 58, 59]

Operating envelopes [60, 61, 62]

Topology
identification

Impedance estimation [63, 64, 65, 66]

Phase grouping

Mixed-integer
programming [67, 68, 69]

Voltage-based [70, 71, 72, 73, 74, 75, 76, 77, 78]
ML power-based [79, 80, 81, 82]

Connection verification [83, 84, 85, 86, 87]
Full-scale network identification [88, 89, 90, 91, 92, 93, 94]

Power system
operation and analysis

Power quality [95, 96, 97, 98]
Voltage control [99, 100, 101]

State estimation [102, 103, 104, 105, 106, 107,
108]

Model-free voltage calculations [109, 110]

Demand response (DR) and
HEMS

Residential [111, 112, 113, 114, 115, 116,
117, 118]

Microgrid [119, 120, 121, 122]

2.1.2. Aggregated Level
Aggregated forecasting on the substation level has been extensively researched in the literature [17]. Fine-grained

SM and demographic data can be utilized to improve the forecasts of aggregated models by extracting valuable
information from clusters of households with similar characteristics. These characteristics may be demographics,
appliance information, household information [18], and energy consumption [19, 20]. Once the clusters are formed,
cluster-specific forecasting models are employed using SM consumption, weather, and calendar data. Eventually, the
forecasts are aggregated to form the substation-level forecast.
2.2. Peak Demand Forecasting

Another noteworthy type of forecasting is peak demand, i.e., predicting the level and time of the highest demand.
Accurate peak load estimation can play a pivotal role in planning studies and is the key driver for determining the
capacity of electric power delivery equipment, such as substations and feeders [25]. Moreover, energy providers can
properly schedule their production, ensure energy balance by optimally utilizing the costly and non-renewable peak
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Table 3
Data Requirements for Forecasting.

Demand Forecasting Peak Demand Forecasting Flexibility Forecasting

Input Historical SM data Historical SM data Aggregated forecast of active
and reactive power

Output Demand forecasts Peak demand forecasts Forecasts of aggregated flexible
active power

Sampling period 30 min 30 min 1 min or higher

Other (non-SM)
input Weather, end-user metadata Weather, end-user metadata Sub-measurements of appliances

load power plants, avoid grid congestion during peak hours, and ensure the economic benefits and stability of the power
grid [123].

Building-level peak forecasting based on SM data has been examined using ML [21, 22] and fuzzy logic [23, 24]
methods. Moreover, various approaches have been proposed in the literature for estimating the aggregated coincident
peak demand [123]. However, the use of SM data has not been thoroughly examined. A data-driven probabilistic
peak demand estimation framework using SM and sociodemographic data is developed in [25] performing customer
clustering.
2.3. Demand Flexibility Forecasting

With the evolution of the smart grid, DR has been envisioned as one of the potentially cost-effective options for
operating the power system. SMs unlock new opportunities for DR. For example, high-granular SM data can provide
advanced end-user behavior profiling with regard to the usage of individual appliances [26].

In this context, the DR potential, i.e., the flexibility of an aggregated group of residential users is quantified and
analyzed in [26]. It is assumed that several households own SMs with sub-metering capabilities, i.e., measurements
of specific appliances are available. All monitored appliances are grouped into controllable and uncontrollable loads;
controllable loads pertain to space/water heating and laundry activities. An artificial neural network (ANN) is trained
to calculate the participation of controllable loads in the total aggregated consumption of the monitored households.
Eventually, the trained model is used for the day-ahead forecast of controllable loads projected to the whole customer
base.

It should be noted that the SM sub-metering capability can also be replaced by advanced analytics, such as non-
intrusive load monitoring (NILM) [124, 125] which allows to break down the electricity consumption on an appliance
level by analyzing SM measurements.

3. Non-technical Losses
In power systems, losses can be generally categorized into technical losses (TLs) and NTLs. TLs are the expected

losses attributed to cables, overhead lines, transformers, and other substation equipment that is used to transfer
electricity during the operation of a power system. NTLs correspond to the unaccounted energy that is neither measured
nor allocated to TLs and may arise from electricity theft, measurement errors, metering faults, etc [126]. Furthermore,
the term pertains to any action that causes incorrect billing, such as unlicensed distributed renewable energy sources
(DRESs), and violations of licensed capacity. The most common source of NTLs is electricity theft, i.e, malicious
measurement manipulation by consumers or other parties.

The impact of NTLs on the optimal operation, management, and cost of DNs is significant. It has been reported that
NTLs may reach even 50% of the estimated consumption, and the overall cost of electricity theft worldwide reaches
more than $25 billion every year [47]. In this context, NTLs detection is of utmost importance and can be classified into
data-oriented, network-oriented, and hybrid [127]. The typical data requirements are presented in Table 4, although in
practice requirements may vary depending on the approach.
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Table 4
Data Requirements for NTLs detection.

Input Historical SM data, voltage
measurements

Output Customers with NTLs

Sampling period 15 min or higher, even daily

Other (non-SM)
input Network topology

3.1. Data-oriented Methods
Data-oriented methods utilize SM and end-user-related data, e.g., personal, spatial, or financial information. They

are divided into supervised and unsupervised based on the existence of labels (known positive/fraud and negative/non-
fraud classes) or not, respectively, and are usually applied to the end-user level, characterizing each one independently
as fraudulent or not. This is achieved by taking into account various features such as maximum/minimum power,
contracted power, etc.

The most common supervised approaches rely on ML, e.g., support vector machines (SVMs) [27], ANNs [28],
decision trees (DTs) [29], and fuzzy logic [30]. Advanced DL models have also been proposed, such as convolutional
neural networks (CNNs) [31, 32], and recurrent neural networks [33, 34]. Although most research works consider
NTLs solely in the consumption domain, i.e., reduce the observed energy consumption, there are cases of cyberattacks
in distributed generation domain as well. In these cases, cyberattacks aim to manipulate SM and increase the reported
generated energy. In [35], regressor trees are developed to detect such attacks using solar irradiance, temperature, and
SM readings.

Additionally, unsupervised methods have been proposed that do not require labeled samples presenting inferior
performance compared to supervised. Such approaches rely on game theory [36] and the expertise of inspectors [37].
3.2. Network-oriented Methods

Besides SM data, network-oriented methods utilize additional DN information, e.g., topology and additional
measurements from RTUs and observer meters, i.e., meters on the secondary side of the distribution transformer.
These methods are based on power flow analysis, state estimation, and sensor placement.

In power flow methods, TLs are initially calculated and subsequently NTLs are estimated by subtracting TLs from
the total losses [38, 39]. However, estimating TLs requires knowledge of the network topology and cable impedances,
which might not be readily available. For example, in [38, 40], additional algorithmic solutions are needed to estimate
the cable impedances before calculating TLs. State estimation approaches [41, 42] have been applied to calculate the
loading of distribution transformers from three-phase voltage, current, active, and reactive power measurements. In
case of a mismatch between measured and estimated values, NTLs may be considered. The use of dedicated sensors
for detecting fraud is also proposed in [43].
3.3. Hybrid Methods

Hybrid methods adopt a combination of data- and network-oriented approaches. For example, in [44, 45], TLs are
calculated through power flow, and in case of high mismatch between produced and consumed energy, SVMs and DTs
are used to detect fraudulent customers. In [46], SM data, wavelet-based feature extraction, and fuzzy c-means along
with extra observer meter data are utilized to detect electricity theft. In [47], three modules are combined for NTLs
detection. The first one uses endogenous features extracted from SM data to train an SVM for fraud detection. The
second module calculates the voltage self-sensitivities from SM measurements and compares them to their theoretical
values extracted from the network topology and power flow analysis. Finally, the third module solves an optimization
problem aiming to minimize losses for detecting the location, extent, and time of NTLs per consumer.
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Table 5
Data Requirements for Asset Management.

Unplanned Outage
Management Remote Switching Fault Detection

Input Event-triggered energized
states of SMs

Event-triggered energized
states of SMs

Harmonics (HIFs),
active/reactive power (IWFs)

Output Outage/restoration events Switching actions Detected faults

Sampling period Event-triggered Event-triggered kHz (HIFs), 15 min (IWFs)

Other (non-SM)
input Network topology Network topology Network topology

4. Asset Management
Asset management is one of the most important chapters in the operation of power systems. Poor asset management

can lead to increased costs and unreliability. In this section, three groups of asset management applications using SM
data analysis are discussed and typical data requirements are presented in Table 5.
4.1. Unplanned Outage Management

An unplanned power outage is defined as an electricity supply failure caused by short circuits, station failure, or
distribution line damage [4]. Outage management is the most significant SM data application behind billing as SMs
enable automatic outage notifications by last-gasp messages without the need of end-user calls. Furthermore, SMs
allow outage confirmation by checking if other SMs in the area operate normally. Such application is crucial since it
has been reported that about 70% of trouble calls are single service outages [128]. Similarly, SMs allow restoration
verification to ensure the proper operation of the system after an outage. In these cases, on-demand SM states and
location of each SM are required.

Several works in the literature focus on identifying the outage location. The basic idea in [48] is the usage of
multiple SMs in a neighborhood. For a single service outage, neighbor SMs should operate normally, in contrast to a
mass power outage. In [49], given the DN tree structure, an outage detection method is developed by combining the use
of real-time power flow measurements on the edges with load forecasts at the nodes. The authors in [50] use the outage
reports from SMs as input for a multiple-hypotheses method to quickly determine the most credible outage scenario
based on an integer programming optimization model. In [51], a hierarchical framework is proposed for multi-level
anomaly detection, e.g., momentary faults, transient and temporary faults, short outages, as well as long-standing faults
and outages that last for many days. The framework can efficiently integrate the large-scale data collected from SMs at
the customers’ premises and transform them into actionable real-time insights with regard to the anomaly of interest
and its severity.

The large-scale penetration of DRESs in DNs is considered in [52]. Outage detection methods relying on end-users’
reports and SM last-gasp signals present poor performance since DRESs provide power even during an outage. To this
end, a data-driven outage monitoring approach is proposed based on the hypothesis that voltage measurements exhibit
significant statistical changes after outages.
4.2. Remote Switching

Besides remote reading, SM can offer to DSOs the possibility of remote switching. By sending a remote signal to
the breaker of the SM, DSOs can connect/disconnect end-users from the grid [53]. This feature can be cost-efficient
reducing labor costs. For example, the DSO can remotely disconnect end-users that have delayed their payments or
do not have any contract and reconnect them as problems have been resolved. Moreover, it is feasible to disconnect
selected end-users during peak load crises to avoid overloading of the network lines. Remote switching can also be
applied at the end user’s request, e.g., when moving to a new apartment.
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Table 6
Data Requirements for Power System Planning.

Hosting Capacity Operating Envelopes

Input Historical data of active/reactive
power for all end-users

Active/reactive power for all
end-users

Output Hosting capacity of PVs and EVs Operating envelopes for end-users
engaged with the aggregator

Sampling period 15 min or higher 5 min or higher

Other (non-SM)
input Network topology Network topology, voltage at the

head of the feeder

4.3. Fault Detection
SM data can be used to detect and locate specific types of faults, e.g., high-impedance faults (HIFs). In [54], a HIF

detection method is developed based on the even harmonics contained in the high-frequency voltage data of SMs. The
authors tested the proposed algorithm assuming both partial and total SM penetration in the DN.

Inter-turn winding faults (IWFs) in single-phase distribution transformers are investigated in [55]. Instead of
measuring the transformer secondary voltage by sensors, the proposed method uses SM measurements. Results
obtained from simulations as well as experimental data show that such measurements can be utilized to achieve very
high detection accuracy while maintaining low costs.

5. Power System Planning
Power system planning pertains to the development and design of the system and its elements aiming to satisfy

future needs. Proper planning in developing countries has become more difficult due to the ever-increasing penetration
of DRESs and electric vehicles (EVs) posing unprecedented technical challenges and jeopardizing the reliable
operation of power systems. SM can play a pivotal role in aiding DSOs to prepare for future challenges and plan
their network development. In this section, works focused on PV/EV hosting capacity and operating envelopes [62]
are presented. Typical data requirements for this category are presented in Table 6.
5.1. Hosting Capacity

As solar PV penetration continues to grow, technical challenges, such as overvoltage and congestion are expected
to occur. To this end, approaches to estimate PV penetration limits for the long-term planning of the power system
have been investigated [56]. The extent to which low-voltage (LV) DNs can host solar PV is the hosting capacity.

In [56], a SM-driven method is introduced for the fast estimation of the hosting capacity without requiring complex
and detailed network studies. Using SM data, a regression model is trained to estimate the PV capacity that can be
hosted without causing voltages outside an upper limit. In [57, 58], probabilistic tools are used to perform power flow
analyses for possible future PV integration scenarios. As long as operational constraints are not exceeded, more PV
units can be added to the DN.

Besides DRESs, EV hosting capacity has also been investigated since the expected increase in peak demand can
compromise the network integrity and pose significant technical challenges, such as asset congestion or voltage drop
issues [59]. The EV hosting capacity is assessed in [59] by exploring multiple EV scenarios and considering their
time-varying behavior during the peak demand day.
5.2. Operating Envelopes

The high penetration of residential DRESs in DNs has enabled households to provide bottom-up services through
aggregators. The use of operating envelopes, i.e., individualized, time-varying import/export limits, has been proposed
to facilitate such services better while ensuring network integrity and allowing more efficient short-term planning of
the DN [60]. The envelopes are calculated by the DSOs using key network information, such as network model, head of
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Table 7
Data Requirements for Topology Identification.

Impedance Estimation Phase Grouping
Connection Verification /

Full-scale Network
Identification

Input
Active/reactive power and

voltage measurements for all
end-users

Active power and voltage
measurements for all

end-users

Active/reactive power and
voltage measurements for all

end-users

Output Line impedance Phase connectivity of
end-users Network topology

Sampling period 15 min or higher 15 min or higher 15 min or higher

Other (non-SM)
input

Network topology,
measurements at the head of

feeder

Measurements at the head of
feeder

Partial topology,
measurements from extra

devices

feeder voltage, and net demand of end-users engaged with the aggregator. Once calculated, these operating envelopes
are broadcasted to DRES aggregators, which use them as constraints when managing their portfolio.

In [61], the authors explore the use of operating envelopes calculated by the distribution company using a three-
phase optimal power flow-based algorithm. The voltage regulation capability of the substation on-load tap changer
(OLTC) is also used to enhance the operating envelopes. The work of [62] proposes a framework for operating
envelopes in the presence of prosumers. The prosumer’s intended operation is periodically submitted and power flow
analysis is performed by the DSO to check for possible operational violations.

6. Topology Identification
Knowledge of the DN topology and parameters, e.g., line impedance and phase connection, is necessary for the

thorough analysis and application of control schemes. However, such information is sometimes not known or inaccurate
in DNs. Various methods utilizing SM data have been proposed to tackle similar issues. Typical data requirements are
presented in Table 7.
6.1. Impedance Estimation

To enhance the observability of DNs, impedance estimation using SM measurements of active/reactive power at
each node has gained significant attention assuming a known DN topology [63]. Several methods have been developed
including particle swarm optimization [64], non-linear and non-convex optimization [65], and multi-linear regression
[66].
6.2. Phase Grouping

Phase grouping is the process of determining the phase connection of end-users. Several data-driven approaches
based on SM data have been introduced [129, 130] and can be classified into mixed-integer programming (MIP),
voltage-based and ML power-based approaches.
6.2.1. MIP Approaches

In MIP approaches, optimization problems are formed using SM measurements and the distribution transformer
supply. On the basis of the law of conservation of power, the connection phase of each end-user is determined, as the
load measured at the feeder level must be equal to the aggregated consumption of all SMs connected to that feeder plus
the unmetered load, e.g., street lights, and TLs. The optimization aims to minimize the difference between the total
feeder demand and the transformer supply as presented in [67, 68]. In [69], both active and reactive power as well as
the connection of PV units are taken into consideration. Such approaches are inferior when dealing with missing data
and assume that all end-users have SMs installed and that there are no NTLs.
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6.2.2. Voltage-based Approaches
Voltage measurements are also used for phase grouping. In [70, 71], the Pearson correlation between an end-

user’s voltage time series and a reference voltage time series (voltage of the transformer) is calculated; the end-user
is assigned to the reference phase with the highest correlation. The advantage of such a method is that it is less error-
prone due to missing data. A similar approach is followed in [72], but instead of using measurements at the substation
downstream, the voltage of a three-phase end-user is used as reference. This avoids using additional measuring devices
at the transformer level, but the connection of a three-phase end-user must be known.

Clustering approaches have also been adopted aiming to form groups of end-users connected to the same phase
by using voltage measurements from SMs and applying k-means [73, 74], and spectral clustering [75, 76]. Spectral
clustering combined with a sliding window ensemble approach is also proposed in [77] to handle missing data and
deal with seasonality. Finally, in [78], principal component analysis (PCA) along with k-means is used focusing on
DNs with high PV penetration.
6.2.3. ML Power-based Approaches

Finally, some approaches use power measurements from SMs in combination with ML techniques. Such methods
can handle missing data, thus can mitigate the disadvantages of MIP methods. Moreover, power measurements are
typically available compared to voltage since they are used for billing purposes. In [79, 80], PCA along with graph
theory and power conservation have been utilized. In [81], the phase connectivity is identified by means of a modified
k-means clustering algorithm and the correlation between the consumption time series and the aggregated consumption
of each phase at the substation. In [82], spectral and saliency analysis is performed to extract features from the SM
power measurements. Subsequently, correlation analysis between end-user features and phase features at the substation
is used to determine phase connectivity.
6.3. Connection Verification

This topic concerns connection verification and detection of reconfigurations based on known topology information
obtained through the geographic information system (GIS).

A MIP-based topology identification model is proposed in [83] to determine the topology configuration with
weighted least squares (WLS) using active power, reactive power, and voltage measurements at each node. In [84],
a generalized state estimation approach for the identification of topology changes is proposed. In [85], an algorithm
for correcting connectivity errors in the GIS representation of the DN is developed that leverages SM measurements.
This algorithm is based on voltage correlation to identify neighboring meters and predict end-users’ upstream and
downstream locations. The task of topology verification is posed as maximum-likelihood and maximum a-posteriori
probability detection problem in [86]. Similarly, in [87], the basic topology information is obtained through GIS,
and the states of unmonitored switches are identified based on a two-stage topology identification framework. A split
expectation-maximization method is proposed for the topology identification problem on the historical batch data and
classifiers, such as DTs, SVMs, and ANNs, are trained to predict the real-time topology efficiently.
6.4. Full-scale Network Identification

Regarding the estimation of the overall distribution grid topology linear-coupled power flow models [88, 89] and
graph theory [90] have been widely used based on the assumptions of a radial DN structure and SM availability only
at terminal nodes (end-users). In [91], a latent tree model is proposed to provide probabilistic representation for all
possible topologies based on SM data, and the Bayesian information criterion is used to find the optimal topology
model. The Markov random field method is implemented in [92] to perform a nodal correlation analysis using data
from RTUs and SMs at end-users premises and an iterative screening method is developed to generate the DN topology.

In [93], only historical voltage measurements of SMs are used and a probabilistic graphical model is utilized to
capture the statistical dependencies amongst bus voltages. The bus connectivity and grid topology estimation problems,
in radial and mesh structures are formulated as a linear regression with a least absolute shrinkage regularization on
grouped variables. Finally, in [94], the network topology is identified by reconstructing a weighted Laplacian matrix
of DNs.

C. L. Athanasiadis et al.: Preprint submitted to Elsevier Page 12 of 20



A Review of Distribution Network Applications Based on Smart Meter Data Analytics

Table 8
Data Requirements for Power System Operation and Analysis.

Power Quality Voltage Control State Estimation
Model-free
Voltage

Calculations
DR and HEMS

Input
Voltage and

current
measurements

Active/reactive
power or voltage
measurements

Active/reactive
power and voltage

measurements

Active/reactive
power, voltage
measurements

only for training

Active/reactive
power or voltage
measurements

Output Type of
disturbance Control action State variables of

the system
Voltage for all

nodes

Control signals,
recommenda-

tions

Sampling period kHz 15 min or higher 1 min or higher 30 min 1 s or higher

Other (non-SM)
input - Topology Topology

Topology (if
voltage data not

available for
training)

Appliance direct
control,

temperature

7. Power System Operation and Analysis
Operational analysis applications pertain to methods of examining and improving the performance of power

systems, reducing costs, and facilitating better data-driven decision-making for proper day-to-day management. In
this section, the concepts listed in Table 2 are discussed. Typical data requirements are presented in Table 8.
7.1. Power Quality

Power quality refers to the degree to which the voltage characteristics of the power supply system, e.g., voltage
magnitude, frequency, harmonics, etc., conform to established specifications. Poor power quality means that there
are non-stationary disturbances that can cause significant malfunctioning of the electrical equipment, financial losses,
and low quality of the electricity that is delivered to consumers. SM data can be valuable in the detection of these
disturbances.

In [95], the authors use feature extraction and ML models to classify a number of disturbances, e.g., voltage sags,
swells, etc. The overall system is developed to run on the edge inside SMs. Similarly, in [96], a real-time power quality
monitoring system for SM level is proposed to detect and classify any type of disturbance. Discrete wavelet transform
is used for feature extraction and a SVM for segregation between regular and abnormal data. The classification of
disturbances is based on a multi-class SVM.

An edge-based architecture running on a low-cost Raspberry Pi 3 is proposed in [97] offering enormous potential
for real scenarios. The classification is performed through a DL model consisting of convolutional, long short-term
memory, and dense layers. Besides detecting power quality issues, a power quality-based tariff scheme build on the
basis of analyzing the techno-economic consequences of consumers’ reactive power and harmonics profiles is presented
in [98].
7.2. Voltage Control

SMs allow two-way communication enabling sending and receiving commands in real-time and consequently
voltage monitoring and control. SM data can be used to detect in real-time if voltage regulation schemes should be
applied to mitigate voltage violations. Such control strategies could be OLTC, Volt-VAr control or capabilities of
modern inverters.

In [99], the potential use of SM data as part of an OLTC voltage control strategy is theoretically discussed aiming
to solve voltage problems caused by DRES. The SMs can provide the necessary end-users voltage measurements to a
control center within short time period. Using these measurements, the voltage set point for OLTC voltage control can
be determined by means of optimal power flow.
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In [100], a control scheme is developed to encounter voltage stability issues solved at the end-user side by reactive
power support using both utility-scale and residential DRESs. To maintain the system frequency and voltage magnitude
close to rated values, a multi-objective optimization model is proposed in [101]. The adopted control strategy is
developed under the Nash game framework and the controllable loads of the end-users are utilized to optimize the
nodal-power variations.
7.3. State Estimation

State estimation is a digital scheme that processes available imperfect information of the power system state and
produces the best possible estimate of the true system state. State estimation of DNs is nowadays essential to enable
the smart management of medium voltage (MV) and LV grids and is considered the foundation of a variety of key
applications, e.g., voltage control, system reconfiguration, and DSM.

SM data have been widely used for state estimation of LV DN. In [102], a combination of WLS and the Levenberg-
Marquardt algorithm with an integrated power flow formulation is used. The methodology is applicable for real-
time state estimation and uses information provided by SMs. WLS is also used in [103], where a cloud-based SM
architecture allowing scalability and interoperability among different off-the-shelf meters is proposed. Moreover, a
suitable design of the estimation algorithm using the uncertainty propagation theory is proposed to improve accuracy.
To avoid inaccurate modeling due to measurement uncertainties, which can lead the state estimation algorithms to
deviate from the true operating states, in [104], an interval state estimation approach is proposed.

SMs have also been utilized for state estimation of MV DN [105, 106, 107, 108] to accurately model pseudo-
measurements that are required due to limited number of measurement devices.
7.4. Model-free Voltage Calculations

Model-free voltage calculations pertains to the process of calculating voltages at network nodes without the need of
electrical models. This can be achieved by capturing the nonlinear relationship between SM data (demand and voltages)
and the corresponding LV feeder. Such an approach based on a deep neural network (DNN) and single-phase SM data
is proposed in [109, 110]. The authors aim to replace the traditional power flow analysis (where the topology of the DN
is known) with a DNN, since traditional power flow is allegedly expensive, time-consuming, and not 100% accurate.
The inputs of the model are the active/reactive power measurements of all end-users and the outputs are the voltages.
For training purposes, active/reactive power along voltage data are required. These can be obtained through power flow
analyses or through SMs. Once the model has been trained, what-if scenarios can be evaluated by simulating cases of
interest, e.g., PV, battery energy storage (BES) units, or EV penetration.
7.5. Demand Response / Home Energy Management Systems

DR refers to a change in the power consumption of a user to match the demand with supply [131]. Typically, a
signal is broadcasted by a utility to the user containing a price change or a command for load shedding [132]. Based on
this, the end-user can adjust the power demand by postponing selected activities that require large amounts of electric
power. A HEMS combines hardware and software components to efficiently manage home energy under DR strategies
[133].
7.5.1. Residential DR

Residential DR and HEMS have been widely investigated in the literature. Various approaches rely on direct
appliance control by programming the set-points of heating, ventilation, and air-conditioning (HVAC) units and
water heaters to provide thermal and hot water comfort [111, 112] while minimizing the energy cost. Similarly, in
[113], a HEMS for the co-optimization of cost and comfort is presented based on time of use/dynamic tariffs and
penalties/payments.

Appliance scheduling under day-ahead pricing has also been investigated [114] to plan the operation of specific
appliances for the next day aiming to minimize the cost and maximize end-user thermal satisfaction. Similar criteria
are considered in [115], where a methodology for smoothing power fluctuations resulting from DRES integration,
using the DR of a large number of residential appliances is presented. Besides cost and thermal optimization, a
deep reinforcement learning approach in [116] integrates time-shiftable appliances, energy utilization of EV and BES
systems, and transformer degradation.

To extract end-user habits and provide optimal day-ahead scheduling, NILM has been integrated into HEMSs. In
[117, 118], NILM is used to extract appliance-level end-user habits from SM data. The results are integrated into a
HEMS to create an efficient and user-centered system by scheduling the appliance usage without user intervention.
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7.5.2. Microgrids
DR for microgrids has also been studied using energy management systems. A distributed data-driven coordinated

design is proposed in [119]. To achieve efficient energy management of a residential grid, controllable distributed
resources, such as EVs and thermostatically controlled loads, are adjusted by balancing the end-use electricity cost,
charging preference, and thermal comfort. The idea of [117] was extended in [120], where an advanced system-level
energy management system designed for a residential microgrid has been proposed. The approach of [117] was used
for each household as the first level of optimization to ensure that both consumers’ bills were reduced and their comfort
levels were not affected. In the second level, the optimum operation of the microgrid was ensured by considering the
generation and consumption units of the microgrid.

In [121], a cooperative and decentralized reinforcement learning method is proposed for demand flexibility
assuming a cluster of buildings aiming to minimize thermal and humidity discomfort through heaters and HVAC.
Building agents can submit flexibility offers to satisfy as much as possible the grid operator’s flexibility request, by
taking also into account the building objectives and constraints, with a minimum communication burden. Finally, in
[122], a NILM model is used to detect real-time EV activity for all end-users. The DSO can select end-users close to
critical nodes and persuade them to shift their charging session during off-peak hours providing additional flexibility
and alleviating undervoltage and line congestion issues in the DN.

8. Conclusions and Future Research
In this paper, a comprehensive overview of DN applications based on SM data is conducted. Aside from automated

energy consumption metering, there are various purposes for integrating SMs in a DN. Specifically, from the literature
review, six key categories of DN-oriented applications have been identified, namely load forecasting, NTLs detection,
asset management, power system planning, topology identification, and power system operation and analysis; the latest
developments for each case have been reported and discussed.

It should be noted that according to [1], for the time being, most DSOs are focused on applications, e.g., reduction
of labor costs, and improvement of SM accuracy, that do not require complex models and analytics, but rather raw
measurements. In this context, it is clear that currently, DSOs do not fully exploit their valuable existing data and profit
only from a small part of the actual SM potential. However, as the number of installed meters increases globally, it is
expected that DSOs will utilize SM data for new fields outside their core business.

Based on the conducted literature review, the most popular data-driven applications are demand forecasting, NTLs
detection, and DR/HEMS. Moreover, other promising areas for future research are summarized below:

• Modeling: Currently, DN modeling applications rely on several assumptions and simplifications, e.g., radial
network structure, approximation of line parameters, etc. More accurate and reliable data-driven models can be
achieved via fine-grained SM data from thousands of endpoints within the DN.

• Planning: The proliferation of energy-intensive and flexible appliances, e.g., EVs and heat pumps, creates
significant potentialities for DR and short-term planning. Since not all EV owners use public charging stations,
new solutions for coordinated home charging of EVs can be developed. Furthermore, future research is needed
on how SM data can provide smart insights and recommendations about the optimal operation of heat pumps
including efficient pre-heating or pre-cooling.

• Operation: Active assets, such as EVs, PV, and BES units, can provide additional services to DN operation and
help alleviate voltage violations or congestion issues. With the uptake of these assets in the residential sector, the
use of already-installed SMs should be further investigated to enable HEMS, DR, and voltage control strategies
and elucidate their potential impact on the power system.

• Monitoring: Fault detection is one of the most challenging tasks in DN monitoring and SMs can be the
key to unlocking new solutions, e.g., for HIF or residential neutral fault detection. Additionally, the next-
generation advanced metering infrastructure (AMI 2.0) enables real-time DN monitoring based on distributed
edge computing, leading to new business cases, access to high-frequency data, and cost minimization.
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