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Abstract—The intermittent and volatile nature of renewable
energy sources (RESs) has introduced new technical challenges
that affect the secure and reliable grid operation. These chal-
lenges can be tackled at the RES level by reducing power
fluctuations with the use of power smoothing (PS) techniques.
Several PS methods have been proposed in the literature to
smooth RES output exploiting battery energy storage systems
(BESSs). However, a comprehensive comparative evaluation of
PS methods is missing. Moreover, the effect of the long-term PS
operation on the BESS life is usually ignored in such analyses.
This paper proposes a methodology for the systematic evaluation
of well-established PS techniques, comparing their effectiveness
on the PS of photovoltaics output based on various signal
metrics. Additionally, an accurate aging model for lithium-ion
batteries is employed to investigate the impact of PS on the BESS
lifetime, highlighting the main parameters that influence capacity
degradation.

Index Terms—Battery energy storage systems, battery degra-
dation, photovoltaics, power smoothing.

I. INTRODUCTION

RENEWABLE energy sources (RESs) constitute the main
drive towards the green transformation of the electrical

grid. However, this transformation brings new challenges
regarding the short-term and dynamic grid operation that are
mainly caused by the intermittent and volatile nature of RESs
[1]. This problem will deteriorate in the future due to the
continuous increase of RES penetration that is primarily driven
by the goal for a climate neutral European Union in 2050 [2].

According to literature, the intermittency and volatility
problems can be solved either at grid or RES level. In the
former case, the network operating conditions are adjusted by
employing coordinated control schemes to compensate the im-
pact of the stochastic RES output on the secure grid operation.
Specifically, in [3], the well-established conservation voltage
reduction method is used to smooth the power fluctuations
at the point of the interconnection of the distribution with
the upstream grid by actively controlling loads. A similar
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approach is adopted in [4] where an optimization-based de-
mand response method is employed to mitigate power and
voltage fluctuations at the distribution grid level. However,
system level solutions require high investments from distri-
bution system operators (DSOs) in control and monitoring
equipment. Moreover, power quality issues may occur, e.g.,
voltage violations, overloading of network equipment, etc.,
since most of the network constraints are not considered in
their implementation.

The above-mentioned issues can be efficiently addressed
by reducing power fluctuations at RES level [5]. The power
smoothing (PS) methods proposed in the literature can be
categorized into two groups based on the use of energy storage
systems (ESSs) [6]. In the first group, RESs are forced to
operate at a set-point below the maximum power point (MPP).
By adjusting this set-point, the RES output power can be
controlled and smoothed against MPP. In particular, in [7],
a virtual low-pass filter is applied to smooth the output wind
power. Additionally, the authors in [8] propose a hierarchical
structure to smooth the output power of a wind turbine by
controlling the dc-link voltage, rotor speed, and blade pitch
angle. However, all these solutions are environmentally costly,
since operating below MPP leads to significant loss of green
energy.

In the second group, ESSs are employed to cover the
mismatch between the output power of the RES MPP, e.g.,
photovoltaic, and the smoothed power delivered to the grid.
The most-well established ESS-based solutions proposed in
the literature can be classified into the following [9]: (a)
filtering algorithms (FAs) and (b) ramp-rate limitation (RRL)
control schemes. In FAs, the ESS absorbs the high frequency
power components of the primary energy source operating
at MPP. The power components can be determined by using
one of the following filtering techniques: high-pass filter [10],
moving-average (MA) algorithm [11], low-pass filter (LPF)
[12], Savitzky-Golay (SG) filter [13], Kalman filter (KF) [14],
and wavelet analysis [15]. In RRL control schemes, the ESS is
used to saturate the RES output power in cases the ramp-rate
of the primary energy source exceeds a predefined limit [16].
Another variant of the RRL method is proposed in [17] where
the RRL is activated only when the injected power to the grid
exceeds a predefined limit. The combined operation of FA and
RRL has been investigated in [18]. In particular, FA is used
to alleviate fast power fluctuations, while RRL is employed to
perform PS in the long-term. An alternative approach includes
the use of fuzzy techniques for PS, presenting, however, a
limited performance against RRL [19].
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Enhanced versions of the above solutions have been pro-
posed in [20]–[22] by including the technical constraints of the
ESSs, e.g., state-of-charge (SoC) limits, during PS operations.
Specifically, an adaptive cutoff frequency of the high-pass filter
is proposed in [20] to ensure SoC sharing among ESSs in a
distribution network. Furthermore, in [21], short-term forecasts
are employed to avoid SoC limit violations. In [22], a feedback
control scheme is integrated to the RRL algorithm to actively
control the ESS SoC within the permissible limits.

According to the above analysis, it can be derived that most
of the works focus on the implementation of PS techniques
without thoroughly evaluating their performance against the
current state-of-the-art solutions. An initial attempt has been
made in [23] by comparing several PS techniques. Neverthe-
less, in this analysis, no metrics have been proposed to deeply
investigate the performance of the examined PS techniques
and no actions were taken to ensure a common basis for
the comparisons. Additionally, all the afore-mentioned control
schemes ignore the effect that the adopted PS technique may
have on the long-term performance of the ESS. Towards this
objective, the authors in [24] have proposed a sophisticated
method based on the KF to smooth the RES output power,
including also the state-of-health of the ESS. However, a
detailed, dynamic ESS model is used, which is not applicable
for the long-term evaluation of ESS capacity degradation.

This paper attempts to fill these gaps by presenting a system-
atic comparative assessment of the most well-established PS
techniques. Building on the previous work of [25], additional
PS techniques are investigated and new metrics are proposed
to evaluate their performance. To ensure a fair comparison,
the PS techniques performance is assessed on a common
basis. A lithium-ion battery aging model is also employed
to evaluate the effect of each PS technique on the ESS
capacity degradation and a sensitivity analysis is performed to
identify the main parameters that influence the ESS lifetime
expectancy.

II. PERFORMANCE ASSESSMENT METHODOLOGY

In this paper, a new methodology is proposed for the
assessment of PS techniques performance. The battery ESS
(BESS) daily operation is simulated based on the specific
control of each PS method, and two main outputs are exported:
the smoothed PV power and the BESS SoC profile. The
first is used to compare the effectiveness of the PS methods
based on specific metrics, and the latter to evaluate the long-
term influence of each PS technique on the BESS lifetime.
To ensure a common comparative basis, all examined PS
techniques (i) are modified by including a feedback control
loop to recover SoC back to its reference value, and (ii) are
adjusted to achieve a common ramp-rate limitation. Apart
from RRL, several well-established FAs are also investigated,
namely LPF, MA, SG, KF, and wavelet analysis [25].

A. Power Smoothing Techniques Under Study

The LPF is the basis for most smoothing methods. LPF
tends to retain the low frequency information up to a selected

TABLE I
KEY DESIGN PARAMETERS OF FA

Method Parameter
LPF time constant (cutoff frequency)
MA window length (model order)
SG window length, polynomial order

DWT window length, wavelet basis function
KF covariance matrix

cutoff frequency within the signal by reducing the high fre-
quency components. In the present analysis, the discrete-time
realization of the first-order infinite impulse response LPF is
considered [25].

An alternative FA is the MA filter. MA is a simple LPF
commonly used with time series data to smooth out short-
term fluctuations and stress out longer-term trends or cycles.
In particular, it creates series of averages of different subsets
of the full data set and smooths the data by replacing each
point with the average of the neighboring data points within
the span. Due to its simple structure and low complexity it is
the most widely used PS algorithm [25].

Closely related to the MA filter is the SG algorithm. In this
design, successive sub-sets of adjacent data points are fitted
by using a low-degree polynomial in a linear least-squares
sense [13].

Wavelet analysis is widely used for feature detection, noise
removal, and other signal processing applications. A sampled
signal is decomposed on the basis of the discrete wavelet
transform (DWT) into low-frequency and high-frequency com-
ponents. Particularly, the wavelet function is used as the low-
pass filter and its dual as the high-pass filter. The process is
iterated and successive low-frequency components are derived
up to a specific resolution level. Effectively, wavelet analysis is
a band-pass filter with a scaling factor of powers of two in the
time domain; thus, it halves the bandwidth at every subsequent
level of the DWT. There are several wavelet basis functions
families with one of the most known being the Daubechies
[26].

The KF is a real-time recursive process [14]. It has been
used into several applications, one of the most important being
to filter out noisy time series data. The aim is to minimize
the error between the actual noiseless and the corrected value
calculated by applying probabilistic estimation. Since data are
processed recursively, more accurate estimates are obtained
compared to traditional FA. Moreover, the fast processing
enables KF for online applications.

The key design parameters of FA are summarized in Table I.
It can be seen that the data window size is important for most
algorithms. In the case of online applications, the window size
includes present as well as historical data. Nevertheless, the
use of historical data always results into the so called “memory
effect” that causes PV output to differ significantly from the
present value of the fluctuating power [6]. A solution to the
memory effect is to directly control ramp-rate of the RES
output power by means of RRL algorithms [6], [16]. In such
a case, the power mismatch between the primary energy and
the RES output is absorbed/provided by the BESS.
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B. Battery SoC Recovery Mechanism

To ensure the BESS availability for the PS operation, a
battery SoC recovery mechanism is adopted. This mechanism
is implemented through the linear feedback loop of Fig. 1 [22]
and aims to recover the battery energy content to a predefined
reference level (Eref

bat ) at the end of the day. It should be noted
that, Eref

bat can be also expressed as a percentage of the battery
nominal capacity (Enom

bat ) as follows:

SoCref = Eref
bat /E

nom
bat (1)

where SoCref is the target SoC value set by the recovery
mechanism.

Considering a given time instant t, the power calculated
from the feedback loop (P t

fb) is subtracted from the PV
output power (P t

mpp) and the resulted power is used as
input to the PS control block. The output of this block is
the smoothed PV power (P t

sm) that is used to calculate the
required BESS charging/discharging power (P t

bat) according
to (2). Eventually, the integral of P t

bat is used to estimate
the new energy content of the BESS at t (Et

bat), taking into
consideration the charging and discharging efficiency of the
BESS, ηch and ηdch, respectively. P t

fb is defined by (3) with
k being the proportional gain that regulates the convergence
speed of the SoC recovery feedback loop.

P t
bat = P t

mpp − P t
sm (2)

P t
fb = k(Eref

bat − Et
bat) (3)

C. Battery Degradation Model

The lithium-ion battery degradation model of [27] is
adopted for the evaluation of the battery capacity loss. First,
the BESS SoC profile for time period T is imported in the
model. Since PS may not result in full charging-discharging
cycles, the BESS SoC profile is analyzed exploiting the
rainflow algorithm [28] to obtain all equivalent full and half
cycles within T . The battery cells degradation at the end
of analysis period T is a result of the calendar and the
cyclic aging mechanisms. The calendar aging is represented by
degradation factor fcal and the cyclic aging by factor fk

cyc for
each k cycle.fcal is a function of the average cell temperature
and the average SoC over the elapsed time; fk

cyc is affected
by the average SoC, the depth-of-discharge (DoD) and the
average temperature of the k-th cycle. After fcal and fk

cyc are
calculated, the overall degradation factor, fd, is determined by
(4), for all cycles N within T .

fd = fcal +

N∑
k

fk
cyc (4)

Finally, the BESS capacity loss (LT ) over T is derived by (5):

LT = 1− αseie
−βseifd − (1− αsei)e

−fd . (5)

The first exponential term of (5) pertains to the fast aging stage
occurring during the early cycles of the battery life, caused
mainly by the formation of the solid electrolyte interphase
(SEI) film [29]. Parameters αsei and βsei characterizing this

TABLE II
BESS CHARACTERISTICS

Capacity 5 kWh SoCref 50%
Inverter efficiency 98% SoCinit 50%

Charging/discharging efficiency 97% SoCmin 10%
Rated power 5 kW SoCmax 95%

early aging stage are acquired through battery aging tests. The
second exponential term of (5) represents the capacity loss
after the SEI film formation stage.

D. Long-term Assessment Methodology

To evaluate the long-term performance of the PS techniques
as well as their effect on BESS aging, the methodology of
Fig. 2 is developed. First, the PV and load power time series
for the time period of a day (d) are imported. Afterwards, the
daily BESS power determined by the examined PS technique
is simulated and the extracted SoC profile is used to obtain
the battery capacity fade up to T using (5). Finally, the BESS
capacity, Cap(T ), is updated using (6):

Cap(T ) = (1− LT )Cap(0) (6)

where Cap(0) is the rated capacity of the battery. The de-
scribed process is iterated with a daily timestep until the BESS
capacity reaches the end of its life, defined here as the 80%
of its rated value [30].

III. NUMERICAL RESULTS

A. System Under Study

To assess the performance of the PS techniques and their
effect on battery lifetime, a PV-battery system is considered
consisting of 5 kWp PV and a BESS with the characteristics
of Table II. Specifically, in this Table SoCmin and SoCmax

denote the minimum and the maximum permissible SoC
values, respectively, and SoCinit stands for the initial SoC
value at the beginning of the simulation. PV output power is
calculated based on the solar irradiation measured for a sunny
and a cloudy day in Thessaloniki, Greece. The daily PV power
is iterated to form a year with a random distribution of sunny
and cloudy days, considering that 30% of the days within the
year are cloudy. It is assumed that the BESS is equipped with
a ventilation system that keeps the battery cell temperature
constantly at 20°C.

B. Comparative Assessment of PS Techniques Performance

To achieve a common basis for the comparisons, the SoC
recovery gain is assumed as k = 2 h−1 and the permissible
PV power ramp-rate limit (RRlim) is set at 4 W/s [31] for
all methods. The key design parameters of the examined PS
methods are adjusted accordingly, as shown in Table III, to
guarantee that (7) is satisfied throughout the day, where RR(t)
represents the absolute value of the PV power ramp-rate.

RR(t) ≤ RRlim, ∀t ∈ d (7)
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Fig. 1. Control loop for battery SoC recovery mechanism.
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Fig. 2. Long-term BES capacity degradation assessment methodology.

TABLE III
PS METHODS PARAMETERS TO ACHIEVE RRlim=4 W/S.

PS method Method parameters
LPF Tlpf=455 s
MA Tma=125 s
SG Tsg=3400 s 1st polynomial order

DWT Tsg=4000 s Daubechies (order 45)
KF a=0.5 b=454

RRL RRmax=4 W/s RRmin=4 W/s

It is worth mentioning that DWT cannot achieve the speci-
fied RRlim. Indeed, as shown in Fig. 3, when the RRL method
is employed, RR(t) is always below the selected RRlim of
4 W/s. With the DWT-based PS method, this limit is exceeded
by far reaching values up to 28 W/s. To achieve the specific
RRlim, different Daubechies family orders (1 to 45) and
window lengths (500 to 4000 s) have been tested. However,
all of the key design parameter combinations led to RRlim

violation. The lowest RRlim that is achieved throughout the
PV production time period by each combination is shown in
Fig. 4, indicating that wavelets are unable to achieve RR(t)
lower than 28 W/s. For this reason, this method is excluded
from the rest of the analysis.

The MPP output power and the smoothed power after ap-
plying each PS technique are indicatively plotted for a cloudy
day in Fig. 5. The resulted power curves present different
level of smoothness depending on the applied PS technique.
Smoother power curves are resulted by applying MA, KF, LPF,
and SG, compared to the RRL method. Moreover, it can be
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observed that KF and LPF lead to identical PS results. This
is attributed to the structure of the KF, that reduces to a first-
order LPF in single signal analysis [14]. It is also shown that
the MA method fails to achieve PS throughout the day for
k = 2 h−1. This is because the SoC reaches the low limit
at the period 14:50–15:40 (see Fig. 6), thus restricting further
BESS discharging. For this reason, k = 4 h−1 is also examined
for the MA method. In this case, PS is successfully achieved,
i.e., RR(t) < RRlim throughout the day, and thus k = 4 h−1

is adopted for MA for the remaining of the paper.
The mitigation of RR(t) for all PS methods is statistically

analyzed by means of blox plots in Fig. 7 for a cloudy day.
Considering the RRL method, the median RR(t) is 4 W/s
and the resulted box plot is wider than the rest methods.
This happens because the limitation is activated only when
RR(t) > RRlim and thus all RR(t) values below RRlim

are permitted. In contrary, all FA methods present a relatively
lower median, approximately 0.4 W/s and narrower box plots.
This means that RR(t) is unnecessarily reduced even in
cases RRlim is not exceeded, resulting into smoother Psm(t)
throughout the day (see Fig. 5).

In addition, the energy utilization of the BESS in terms
of the total energy charged and discharged within the daily
operation is presented in Table IV. It can be seen that FA
methods lead to excessive energy utilization to achieve this
smoother Psm(t), compared to the RRL method. Note that, a
high energy amount indicates larger depth of discharge, which
in turn affects negatively the battery life expectancy. From all
FA methods, MA achieves the strictest ramp-rate limitation,
presenting a median RR(t) of 0.28 W/s (see Fig. 7) and
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consequently the highest BESS energy utilization.
To systematically investigate the performance of the PS

techniques, three well-established signal analysis metrics are
adopted. The mean squared error (MSE) and the root mean
square error (RMSE), given in (8) and (9), respectively,
quantify the deviation of the smoothed PV power time series
from the MPP output time series, throughout a certain time
period consisting of N samples. A high value of these metrics
demonstrates a smoother PV output power curve. As shown in
Table V, MA achieves the highest value of these metrics, since
it provides a smoother power profile than other methods. This
is also substantiated by the results of Fig. 5 and by the median
RR(t) when using MA, which is the lowest among other
methods. On the contrary, RRL provides the lowest MSE
and RMSE, meaning that the deviation between the smoothed
power and the MPP output profile is lower than in all other
methods. This is expected due to the more relaxed RR(t)
limitation. Note that a higher value in the metrics results in
higher energy utilization of the BESS.

MSE =
1

N

N∑
ti=1

(
P ti
sm − P ti

mpp

)2

,∀ti ∈ N (8)

RMSE =
√
MSE (9)

The third metric is the sample entropy (SampEn) [32].
It is a statistical index depicting the randomness of a series
of data and is used to quantify the smoothness of the PV
power time series after PS application. Contrary to MSE and
RMSE, SampEn does not compare the smoothed power to
the MPP output power profile, but evaluates the randomness
of the data within a single time series for a given time period.
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Fig. 7. Absolute value of ramp-rates for a cloudy day.

TABLE IV
DAILY TOTAL (CHARGED AND DISCHARGED) BESS ENERGY.

RRL LPF MA SG KF
Energy (kWh) 3.12 4.32 9.25 4.85 4.32
Change vs. RRL - +39% +197% +56% +39%

Specifically, the SampEn values in Table V refer to the 24 h
P t
sm time series. A lower value of SampEn pertains to a

smoother power profile. As expected, MA presents the lowest
and RRL the highest SampEn among other methods. Note
that, higher SampEn values are characterized by lower BESS
utilization levels.

C. Battery Lifetime Analysis

The impact of the PS methods on the battery lifetime is
derived by applying the long-term assessment methodology of
Fig. 2. Based on the results of Fig. 8, it is shown that the RRL
achieves the longer battery lifetime compared to FAs. This is
mainly attributed to the lower daily energy usage from the
battery, and thus the fewer and narrower battery cycles needed
to achieve PS, as shown in Fig. 6. Among all techniques, MA
results in higher battery degradation since it reaches a larger
DoD, as illustrated in Fig. 6, and uses the largest daily amount
of battery energy. It is remarkable that, as for the same battery
capacity, a higher SoCref leads to faster battery degradation,
since it increases the average SoC, which in turn results into
higher calendar and cyclic degradation factors. Moreover, for
the same SoCref , a higher battery capacity leads to longer
lifetime as observed in Fig. 8 for the case of SoCref = 50%.
This is explained by the fact that lower BESS capacities lead
to higher DoD, considering the same battery energy required
for PS.

D. Impact of Reference SoC Level on Battery Lifetime

A sensitivity analysis is performed to evaluate the impact of
SoCref on the BESS degradation, which eventually influences
the average SoC level of the battery charging-discharging cy-
cles and the average SoC throughout the BESS lifetime. These
two parameters play an important role in the resulted cyclic
and calendar aging of the BESS, respectively. Investigating the
case of a 5 kWh BESS operating under the RRL technique,
SoCref is varied in the range of 20% to 80% with a 2.5%
step. The BESS lifetime is strongly influenced by SoCref as
demonstrated in Fig. 9. A low SoCref , e.g., 20%, prolongs
the battery lifetime to more than 18 years. A high SoCref

of 80% may cause 8 years reduction of BESS lifetime. It is
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TABLE V
PS PERFORMANCE METRICS FOR A CLOUDY DAY.

RRL LPF MA SG KF
MSE 0.330 0.457 1.012 0.524 0.456
RMSE 0.574 0.676 1.006 0.724 0.676

SampEn* (x10−4) 45.1 7.79 5.27 9.47 7.81

* A value of m=1 and r=0.2 are used for SampEn metric [32]. It is also
noted that P t

mpp timeseries presents a SampEn value of 293 · 10−4.

5 kWh, 30% 5 kWh, 50% 5 kWh, 75% 2.5 kWh, 50%
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Fig. 8. Impact of the selected PS technique, the installed BESS capacity, and
the selected SoCref (30%, 50%, and 75%), on the battery lifetime.

worth noting that the relation between the battery lifetime and
SoCref is not linear and can be expressed by a second order
polynomial.

IV. CONCLUSIONS

This paper proposes a methodology for the systematic eval-
uation of PS techniques, in regards with (i) their performance
in smoothing the PV output power and (ii) their effect on
the battery lifetime expectancy. The PS methods based on
FAs result in a smoother power profile compared to the
RRL technique, limiting the ramp-rate even when the selected
boundary is not exceeded; thus leading to excessive BESS
operation. The highest BESS energy utilization is observed
when the MA-based PS technique is used. It is also noticeable
that the PS method based on wavelets is unable to achieve the
desired ramp-rate limitation. The level of smoothness of the
PV output power achieved by each PS method is quantified
through signal analysis metrics. Moreover, it is demonstrated
that the average SoC level and the DoD play an important
role in the battery capacity loss. These two parameters are
affected by the PS technique, the selected reference SoC value,
and the installed battery capacity. Based on the results of this
study, when lithium-ion batteries are employed for PS, the
RRL technique alongside with a low reference SoC value are
suggested to prolong the life of battery.
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