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Abstract—Grid modernization and digitalization gradually al-
ter the traditional operation of power systems. Demand side man-
agement has attained significant attention and the deployment
of smart meters creates opportunities for new data-driven ser-
vices. Towards this direction, home energy management systems
(HEMS) can play a pivotal role by enabling residential demand
response applications. This paper introduces a HEMS aiming at
low energy cost, improved thermal comfort and scheduling of
appliance operation according to end-user habits. To this end, a
multi-objective optimization problem is formulated by employing
a non-intrusive load monitoring mechanism and a control scheme
for heat pumps. The conducted analysis investigates the effect of
each objective on the overall system performance under different
dynamic tariff schemes.

Index Terms—Demand side management, heat pump, home en-
ergy management system, non-intrusive load monitoring, multi-
objective optimization, thermal comfort.

I. INTRODUCTION

Traditionally, in power systems large generation units op-
timize their operation to achieve a match between supply
and demand. Nonetheless, nowadays grid modernization and
digitalization not only enable residential end-users to become
active parts of the energy sector exploiting photovoltaics
(PV) and battery energy storage (BES) but also provide new
advanced data-driven services through the deployment of smart
meters (SMs). Demand response (DR) is one such service and
refers to the change of the end-user consumption to match de-
mand with supply. Typically, utilities broadcast signal demand
requests to their customers containing information about the
electricity price or commands for load shedding [1]. This way
end-users may adjust their power demand by shifting selected
tasks that require large amounts of electric power or changing
the temperature set-points of the electrical heating system. To
exploit this load flexibility, home energy management systems
(HEMS) that combine hardware and software components are
required for monitoring and controlling efficiently and most
importantly in an automatic way the household under DR
schemes.
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Residential DR and HEMS have been widely investigated
in the literature [2], [3]. Various approaches rely on the direct
appliance control by programming the set-points of water
heaters and heating, ventilation, and air-conditioning (HVAC)
units to provide hot water and thermal comfort, to end-users
[4]–[6]. Appliance scheduling under day-ahead pricing has
also been investigated [7], [8] to plan the operation of specific
appliances for the next day aiming to minimize the cost and
maximize the thermal comfort of end-users. Nevertheless,
these solutions neglect the discomfort that may be posed to
the end-users by not aligning the scheduling of the appliances
with their habits.

To overcome this issue, non-intrusive load monitoring
(NILM) techniques have been integrated to HEMS to identify
and include the end-user habits in the optimal day-ahead
scheduling [9], [10]. NILM refers to the process of energy
consumption breakdown (disaggregation) on appliance or ac-
tivity level for residential or commercial-industrial consumers
[11]. Sub-measurements from appliances within the household
are not required; instead only the total measured demand at
the main power service is used [12]. In [9], SM data are
analyzed with a multi-task deep neural network (DNN), and
appliance-level information regarding the consumption and
operating status is extracted. The NILM model is integrated
within HEMS to create an efficient and user-centered system
to schedule the appliance usage of a household microgrid
with residential wind turbines, PV, and BES units. A similar
approach has been followed in [10], where NILM is used to
extract the end-user habits and schedule the operation of the
household appliance without user intervention by employing
an automated genetic multi-objective algorithm.

Based on the above, it is evident that most HEMS studies
[4]–[8] formulate the optimization problem on the basis of
cost and thermal comfort objectives. Few works incorporate
in their analysis the end-user habits [9], [10], but still do
not consider all aspects, e.g., the impact of thermal comfort.
Additionally, all these solutions pose restrictions only to
the netted active power exchanged with the grid, neglecting
reactive power. To fill these gaps, and introduce a holistic
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approach in this paper a HEMS for smart active/reactive
power control and management of households based on SM
data analysis and heat pump (HP) control is presented. The
proposed system aims to i) minimize the energy cost by
employing a PV/BES system, ii) schedule the operation of
various appliances tailored to end-user habits by means of
NILM, and, iii) maximize thermal comfort by controlling
the indoor temperature via a HP. Therefore, a multi-objective
optimization problem is formulated and solved through mixed-
integer non-linear programming (MINLP). Finally, from the
conducted parametric analysis the impact of each objective
on the final result is evaluated and discussed under different
electricity cost tariffs.

II. PROPOSED HEMS SYSTEM

The target of the proposed HEMS is the optimal day-ahead
electricity scheduling of a household. The HEMS is depicted
in Fig. 1 and consists of two main operational modules, namely
the optimization and the NILM, as well as of a number of
sub-systems, i.e., PV/BES, HP, and flexible load (appliances
that their operation can be shifted throughout the day). A
distinct feature of the proposed HEMS is the NILM module
that extracts the end-user habits in terms of flexible load
usage by analyzing historical SM data. The HEMS collects the
resulting information from NILM, the day-ahead tariff and the
forecasts of the outdoor temperature, the PV production, and
the uncontrollable load. By utilizing the above data, schedules
the operation of the flexible load according to the end-user
preferences and controls the HP and BES to provide thermal
and habit comfort alongside minimizing the total cost.

Fig. 1. Architecture of the proposed HEMS.

III. NILM MODULE

To extract end-user habits and create an end-user-oriented
HEMS, NILM analysis is applied by using a multi-task
DNN. The model is appliance-specific, i.e., for each target
appliances, a new model is created. The network utilizes SM
measurements of active (Pload) and reactive (Qload) power at
a sampling rate of 6 s to estimate the corresponding active
and reactive power of the target appliance k, denoted as P̂k

and Q̂k, respectively. The model input consists of sliding
non-overlapping windows of Pload and Qload with a length
of 15 min (150 samples) and the outputs are P̂k and Q̂k for
the same time window along with the target appliance status
(on/off), ŝk. The model architecture is presented in Fig. 2 and
consists of two combinations of convolutional/pooling layers,
two long-short term memory (LSTM) cells, a common dense
layer, and three separate dense layers for each output.

Fig. 2. Architecture of the NILM model.

The selected target appliances are dishwasher, washing
machine, dryer, and water heater due to their high energy con-
sumption and flexibility [13]. To train, validate and evaluate
the models, three distinct datasets were created. In particular,
by using the bottom-up modeling approach presented in [14],
the aggreggated active/reactive timeseries of a single house-
hold were created for 90 days, including all target appliances.
From this dataset, 60 days were used for training, 15 for
validation, and 15 for testing. All timeseries were normalized
to speed up learning and achieve faster convergence.

During the training process, a backpropagation algorithm
was used to optimize the loss function. Since the problem
concerns multi-task learning with three outputs, three different
loss functions are combined. The loss functions LP and LQ

defined in (1) and (2) refer to the mean squared error (MSE) of
the active and reactive power for T samples, respectively, and
Ls in (3) to the binary cross-entropy of the appliance status.

LP =
1

T
·

T∑
t=1

(Pk(t)− P̂k(t))
2 (1)

LQ =
1

T
·

T∑
t=1

(Qk(t)− Q̂k(t))
2 (2)

Ls = − 1

T

T∑
t=1

[sk(t) log2 ŝk(t)

+ (1− sk(t)) log2 (1− ŝk(t))] (3)

Therefore, the total loss is calculated in (4):

L =
1

3
LP +

1

3
LQ +

1

3
Ls (4)

Adam optimizer [15] was selected assuming an initial learning
rate of 10−4. To avoid over-fitting, early stopping with patience
was used; the training process is stopped once the validation
error does not decrease after three consecutive iterations.

Once the models have been trained, the end-user habits are
determined from the testing set based on the following four
appliance-specific operating parameters:

• mean active power consumption (P k),
• mean reactive power consumption (Qk),
• mean operation time (OTk), and
• the preferred operation period (POPk), i.e., the time

period when the end-user usually operates the appliance.



To estimate POPk, the probability density function
(PDFk), i.e., the probability of the appliance operating at each
timestep, is calculated. The POPk is defined as the period
between the first and last index when PDFk is higher than
0.5·max(PDFk), similarly to [9].

IV. OPTIMIZATION MODULE

The optimization module aims to minimize the total house-
hold energy cost and maximize the end-user thermal and habit
comfort under three objective functions. This way, the day-
ahead scheduling of the flexible load is formulated as a MINLP
problem.

A. Objective Functions

1) Operation cost (OC): This objective function represents
the total household energy cost in terms of dynamic tariff:

OC =
N∑

n=1

DAP (n) · Pnet(n) ·∆n (5)

where n denotes a specific timestep, N is the number of
timesteps, ∆n is the length of timestep in hours, DAP is the
day-ahead electricity pricing, and Pnet is the power exchanged
with the grid. A timestep of 15 min. is assumed, thus N = 96
and ∆n = 0.25. It should be indicated that OC is normalized to
OCnorm = OC/cproxy; cproxy is an approximated day-ahead
cost (BES and HP units are neglected), and is calculated as:

cproxy =

[
N∑

n=1

DAP (n) · (Pun(n)− PPV(n))

+mean(DAP ) ·
K∑

k=1

OTk · P k

]
·∆n. (6)

The generated power of the PV unit, PPV, and the active power
of the uncontrollable loads, Pun, are assumed as known inputs
that can be provided from advanced forecasting models.

2) Habits discomfort (HD): The second objective refers to
the habits of the end-user regarding appliance operation. The
aim is to minimize the discomfort by scheduling the appliance
operation during periods when the end-user usually uses them
by utilizing the information provided by the NILM module.

To this end, a satisfaction degree, SDk, for each timestep
n is calculated per appliance. If the appliance is scheduled
to operate within POPk, then SDk = 1; as the scheduled
period deviates from POPk, the value of SDk decreases. An
indicative example is shown in Fig. 3 with a POPk from 16:00
(n = 64) to 20:00 (n = 80). In this context, HD is expressed
as follows:

HD = 1−
∑K

k=1

∑N
n=1 SDk(n) · uk(n)∑K

k=1 OTk

(7)

where uk(n) is a binary value indicating the status (on/off)
of the appliance k at timestep n. Note that, the following
constraints should be met regarding the appliance operation

Fig. 3. Example of satisfaction degree.

duration and ensure that the appliance works continuously
without any interruption [9]:

N∑
n=1

uk(n) = OTk (8)

N∑
n=2

|uk(n)− uk(n− 1)| = 2 (9)

3) Thermal discomfort (TD): The third objective aims to
maintain the indoor temperature, Tin, close to the desired level,
Tc, by adjusting the HP set-points. In this sense, the objective
is to minimize TD:

TD =

∑N
n=1 |Tin(n)− Tc|

N
(10)

Considering, the three objective functions, the overall multi-
objective function is formulated as:

min{α1 ·OCnorm + α2 ·HD + α3 · TD} (11)

where α1, α2 and α3 are the corresponding weights.

B. Operational and Technical Constraints

The aim of the optimization is to schedule the operation
period of each appliance (uk), and determine the BES (Pbat)
and HP (PHP) unit power in terms of (11) considering that
the aggregated active and reactive power is:

Pnet(n) = Pun(n) +
K∑

k=1

P k · uk(n) + PHP(n)

+ Pbat(n)− PPV(n) (12)

Qnet(n) = Qun(n) +
K∑

k=1

Qk · uk(n)

+ tan(cos−1(pfHP)) · PHP(n) (13)

where Qun is the reactive power of the uncontrollable loads
and pfHP is the HP power factor; for PV and BES units a
unity power factor is assumed. The constraints regarding the
connection with the grid are the following:

Pmin ≤ Pnet(n) ≤ Pmax (14)

Qnet(n) ≤ Qmax (15)



aiming to prohibit large injections of active power into the
grid and at the same time limit the active and reactive power
consumption of the end-user.

V. SUB-SYSTEMS MODELING

In this section, the modeling of each HEMS sub-system is
described.

A. Uncontrollable Loads

The bottom-up modeling approach presented in [14] is used
to create the total active and reactive power consumption by
aggregating the elementary load components, i.e., individual
appliances. The appliances under consideration are the four
flexible appliances and a number of non-flexible uncontrollable
loads, i.e., always-on, TV, fridge, iron, toaster, range. The ex-
tracted timeseries are used to train and test the corresponding
NILM models. In the context of day-ahead scheduling, only
the non-flexible appliances are modeled since the operation of
the flexible appliances is determined by the HEMS.

B. Heat Pump

An air-source HP is modeled by considering the relationship
between indoor temperature (Tin), outdoor temperature (Tout),
and HP active power, PHP, as [8]:

Tin(n+ 1) = Tin(n) + η · (Tout(n+ 1)− Tin(n))

+ γ · PHP(n) ·∆n (16)

where η and γ are coefficients denoting the thermal conditions
of the HP. Moreover, the following limitations are applied:

0 ≤ PHP(n) ≤ PHP,max (17)

where PHP,max is the maximum permissible power.

C. PV/BES Sub-system

Regarding renewables, a PV is considered as the main gen-
eration source. The PVGIS platform [16] is employed to obtain
hourly PV generation profiles along with the corresponding
outdoor temperatures. The Akima interpolation [17] is used
for upsampling to 15 min.

To cope with the intermittent nature of PVs, improve the
self–sufficiency of the end-user, and reduce the electricity
tariff costs, a BES unit is also incorporated. The BES state-
of-charge, SoC, is estimated as [9]:

SoC(n+ 1) = SoC(n) +

[
ηch · P ch

bat(n)−
P dch
bat (n)

ηdch

]
· ∆n

Ebat
(18)

where P
ch(dch)
bat and ηch(dch) are the charging (discharging)

power and efficiency of BES unit, respectively; Ebat is the
energy capacity. To increase the BES lifetime, upper and
lower state of charge and charging/discharging power limits
are assumed according to (19), (20), and (21):

SoCmin ≤ SoC(n) ≤ SoCmax (19)

P ch
bat(n) ≤ Pch,max · ubat(n) (20)

P dch
bat (n) ≤ Pdch,max · (1− ubat(n)) (21)

TABLE I
NILM RESULTS

Metric Water
heater Dishwasher Washing

machine Dryer

Active power MAE (W) 3.986 16.121 6.612 18.181
Reactive power MAE

(VAr) 0.000 1.753 3.548 1.212

Precision 0.954 0.687 0.917 0.973
Recall 0.973 0.846 0.939 0.965

F1-score 0.964 0.758 0.928 0.969

TABLE II
OPERATING PARAMETERS

Parameter Water
heater Dishwasher Washing

machine Dryer

A
ct

ua
l

Pk (kW) 4.023 0.981 0.435 1.292
Qk (kVAr) 0.000 0.068 0.218 0.059
OTk (min.) 17.314 70.784 48.430 57.100

POPk
20:11-
20:52

14:53-
16:09

09:47-
10:14

11:35-
12:32

E
st

im
at

ed

Pk (kW) 3.815 1.111 0.478 1.254
Qk (kVAr) 0.000 0.034 0.116 0.042
OTk (min.) 17.714 68.269 48.225 57.400

POPk
20:11-
20:52

15:00-
16:10

09:45-
10:15

11:35-
12:34

where Pch(dch),max is the maximum charging (discharging)
power. Moreover, ubat is a binary variable indicating charging
or discharging. Based on these, Pbat is defined as:

Pbat(n) = P ch
bat(n)− P dch

bat (n). (22)

VI. NUMERICAL RESULTS

A. NILM Analysis

The performance of the NILM system is tested by evaluating
the accuracy of the target appliance estimated active and
reactive power by means of the mean absolute error (MAE).
Accordingly, for the assessment of the appliance status the
precision, recall, and F1-score [11] metrics are adopted. All
metrics are calculated for the testing set presented in Table I
and the results are on par with other approaches [9], [18], [19].
It can be seen that the proposed NILM model can accurately
estimate both active and reactive power as well as the status
of all target appliances.

The actual and the estimated operating parameters of the
target appliances are compared in Table II. The calculated
POPk is very close to the real operational period for all
appliances indicating that the developed NILM systems can
indeed determine the period where HD can be minimized.

B. Day-ahead Scheduling

To evaluate the proposed day-ahead scheduling and the
impact of the three objectives, the test case with parameters
summarized in Table III is examined. The input timeseries,
i.e., the solar production for a 3kWp PV system, the active
power of the uncontrollable loads, the outdoor temperature,
and DAP are depicted in Fig. 4. In order to solve the MINLP
problem, the APOPT solver of GEKKO package [20] is used.



TABLE III
PARAMETERS

Parameter Value Parameter Value Parameter Value

PHP,max 3 kW Ebat 8 kWh ηch 0.9
pfHP 0.85 SoCmin 0.1 ηdch 0.9
η 0.9 SoCmax 0.9 Pmin -4 kW
γ -2.0 Pch,max 3 kW Pmax 5 kW
Tc 25 Pdch,max 3 kW Qmax 4 kVAr

Fig. 4. Input timeseries

The scope of this test case is to evaluate the relative impact
of HD and TD on OC. Assuming that α1 = 1, the day-
ahead scheduling is performed by varying α2, α3. This way
the effect of HD and TD with respect to OC is investigated.
The resulting OC, HD, and TD are presented in Fig. 5 by
means of heat maps.

It is evident that low values of α2 and α3 (habit and thermal
comfort are not significant) result into low OC. This is because
the operation of the flexible loads is scheduled during low-
cost hours and the HP operation is trivial. By increasing α2,
habit comfort becomes more important, and flexible loads are
scheduled during specific periods. This results into slightly
increasing OC. On the other hand, high values of α3 dictate
the necessity for thermal comfort. Therefore, the optimization
module intensifies the operation of the HP aiming to heat the
household up to the specified temperature and consequently
significantly increasing the operation cost, OC.

To further evaluate the results, a greedy HEMS is con-
sidered. In this case, the HEMS schedules the operation of
each appliance separately (in descending order regarding the
total energy consumption) at the cheapest available timeslot
that guarantees uninterrupted operation without violating the
maximum power constraints. Subsequently, the HP operation
aims to provide optimal thermal comfort by means of (16)
with respect to the maximum active/reactive power constraints.
Note that, in this case, the BES control strategy target is to
maximize the self-consumption ratio (SCR) [21]. Under the
SCR strategy, any surplus of generated power is used for
charging; discharging is activated when the PV generation
is lower than the active power demand. The results of the
greedy HEMS are presented in Table IV. It can be seen that
HD = 1 since the scheduling of the appliances is based
solely on minimizing the energy cost without considering end-
user habits. Moreover, TD is lower and OC higher than the
proposed HEMS, even when the latter provides maximum

TABLE IV
RESULTS OF GREEDY HEMS

Objective Value

OC 8.056
HD 1.000
TD 1.323

thermal and habit comfort.

C. Investigation of Other Billing Mechanisms

Two additional test cases (TCs) are examined and compared
to the original scenario. In both test cases, the imported energy
is charged according to DAP and:

• TC1: the exported energy is compensated by a 10%
increase, i.e., 1.1 ·DAP , and

• TC2: the exported energy is compensated by a 10%
decrease, at 0.9 ·DAP .

The obtained results for TC1 and TC2 are presented in
Fig. 6 and Fig. 7, respectively. In TC1, the optimization
module leverages the highly compensated exported energy
leading to marginally profit-oriented solutions. Thus, the OC
decreases significantly compared to the original scenario at
the expense of higher HD and TD. In TC2, the opposite
effect is observed. The low compensation of exported power
leads to a smaller margin for financial benefit and thus
to comfort-oriented solutions. In this context, the proposed
HEMS provides lower HD and TD than the original scenario,
but higher OC.

VII. CONCLUSIONS

A NILM-based HEMS is presented aiming to minimize
the energy cost of the household, schedule the operation of
flexible loads based on the end-user habits and maximize the
thermal comfort by controlling the indoor temperature via
a HP. Moreover, active assets, i.e., PV and BES units, are
considered to provide additional flexibility. The operation of
the HEMS is formulated as a multi-objective optimization
problem. A parametric analysis is performed regarding the
effect of each objective and different dynamic tariffs are
examined by modifying the price of the exported energy.

From the analysis, it can be deduced that the employed
NILM model can effectively profile end-user habits based
on SM data. The extracted habits and accurate forecasts of
temperature and PV production enable the proposed HEMS to
plan the day-ahead operation of flexible loads, BES, and HP
units under a win-win strategy in terms of cost and comfort.
Finally, according to the obtained results, it can be realized
that higher and lower compensation for exported energy leads
to profit-oriented and comfort-oriented solutions, respectively.
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