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Abstract—As digital transformation progresses, smart meters
with enhanced monitoring and communication capabilities grad-
ually replace the old-generation metering infrastructure. Their
large-scale deployment enables innovative and advanced data-
driven services. In this paper, an overview of the state-of-the-art
of distribution network-oriented applications using smart meter
data is conducted. The most recent developments are summarized
and discussed with a focus on six key areas, i.e., load forecasting,
non-technical losses, asset management, power system planning,
topology identification, and power system operational analysis. It
is expected that the taxonomy and the associated applications, as
evaluated and discussed in this work, will assist utilities, service
providers, and distribution system operators to identify future
technological trends regarding the utilization of smart meter data.

Index Terms—Data analytics, distribution networks, smart
meters.

I. INTRODUCTION

Digitalization is nowadays emerging as a necessity for
energy utilities and companies globally. One of the most
important milestones of this transformation is the extensive
smart meter (SM) roll-out. For example, the numbers of SMs
installed in the U.S. and China reached by the end of 2016 70
million, and 96 million, respectively, [1]. At its first step, SM
technology was deemed useful solely for automatic readings
by the energy provider aiming to facilitate accurate billing
and reduce labor costs of on-site visits. However, since SMs
can generate and communicate various kinds of energy data
between the consumer and the energy provider at much more
fine-grained spatial and temporal resolutions, the benefits are
numerous for all energy stakeholders, e.g., operators, retailers,
consumers, and aggregators. In particular, distribution system
operators (DSOs) and utilities have access to more data and
information from thousands of internet-of-things (IoT) end-
points within the smart grid (SG) creating new opportunities
for energy services and data-driven business models, e.g.,
non-intrusive load monitoring (NILM), grid operation and
maintenance, fault detection, detection of non-technical losses
(NTLs), and load forecasting [2].
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In the literature, there is a significant number of research
activities accompanying the global SM roll-out, seeking to
exploit and create value from the collected data to the fullest
extent through SM data analytics [3], [4]. According to [1],
in recent years, there is a vast number of funded projects
on SM data analytics worldwide. However, most academic
works are end-user-oriented [3] or conduct generic analysis
on various SM use cases [1], [4]. Unlike these works, in
this paper, a comprehensive overview is conducted regarding
the new applications being enabled by the use of SM data
from the distribution network (DN) perspective. Based on the
outcome of the literature review, the various applications are
grouped into six key categories, namely, load forecasting, NTL
detection, asset management, power system planning, topology
identification, and power system operation and analysis, as
depicted in Fig. 1.

Fig. 1. Taxonomy of SM data analytics for DSOs.

II. LOAD FORECASTING

A. Demand Forecasting

Demand forecasting is one of the most useful tools in
modern power systems. To support the production-demand
equilibrium, energy participants, such as balance-responsible
parties, rely significantly on short-term demand forecasting.
DSOs use forecasts at the feeder level to support operations
and planning processes, and at the same time, electricity
providers can make more educated decisions about pricing,
procurement, and hedging based on knowledge of their cus-
tomers’ future needs [1].
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Aggregated forecasting on the substation level has been
extensively researched in the literature [5]. However, fine-
grained SM and demographic data can be utilized to improve
the forecasts of aggregated models by extracting valuable
information from clusters of households with similar char-
acteristics. These characteristics may be demographics, ap-
pliance information, household information [6], energy con-
sumption [7] and geographical location [8]. Once the clusters
are formed, multiple cluster-specific forecasting models are
employed using SM consumption, weather, and calendar data.
Eventually, the forecasts are aggregated to form the substation-
level forecast.

B. Demand Flexibility Forecasting

With the evolution of the SG, demand response (DR) has
been envisioned as one of the potentially cost-effective options
for operating the power system. SMs unlock new opportunities
for residential DR. For example, high-granular SM data can
provide advanced end-user behavior profiling with regard to
the usage of individual appliances [9].

In this context, the DR potential, i.e., flexibility, of an ag-
gregated group of residential users is quantified and analyzed
in [9]. Several households own SMs with sub-metering capa-
bilities meaning that measurements of specific appliances are
available. All monitored appliances are grouped into control-
lable and uncontrollable loads; controllable loads are related to
space/water heating and laundry activities. An artificial neural
network (ANN) is trained to calculate the participation of
controllable loads in the total aggregated consumption of the
monitored households. Eventually, the trained model is used
for the day-ahead forecast of controllable loads projected to
the whole customer base.

III. NON-TECHNICAL LOSSES

NTLs correspond to the non-billed energy injected into the
network that is neither measured nor allocated to technical
losses (TLs) and may arise from electricity theft, measurement
errors, metering faults, etc. The most common source of NTLs
is electricity theft which refers to malicious measurement
manipulation by consumers or other parties. As NTLs can have
a large impact on the optimal operation and management of
DNs, their detection is of utmost importance. According to the
comprehensive and thorough review of [10], NTL detection
techniques can be classified into two main categories, namely
data-oriented and network-oriented.

A. Data-oriented Methods

Data-oriented methods utilize SM and end-user-related data,
e.g., personal, spatial, or financial information. They are di-
vided into supervised and unsupervised based on the existence
of labels (known positive/fraud and negative/not-fraud classes)
or not, respectively. These methods are usually applied on end-
user level, characterizing each one independently as fraudulent
or not. This is achieved by taking into account various features
such as maximum power usable by the client, geographical
location of end-user, contract status, and more.

The most common supervised approaches rely on machine
learning (ML), deep learning [11]–[14], and fuzzy logic ap-
proaches [15]. Additionally, unsupervised methods have been
proposed that do not require labeled samples, i.e., datasets
with known energy thieves, presenting inferior performance
compared to supervised. Such approaches rely on game theory
[16] and the expertise of inspectors [17].

B. Network-oriented Methods

Besides SM data, network-oriented methods utilize addi-
tional DN information, e.g., topology and additional mea-
surements from remote terminal units and observer meters,
i.e., meters on the secondary side of the medium voltage
(MV)/low-voltage (LV) transformer. These methods are based
on power flow analysis, state estimation, and sensor placement.

In power flow methods, TLs are initially calculated and
subsequently, NTLs are estimated by subtracting TLs from the
total losses in the DN [18]. State estimation approaches [19],
[20] have been applied to calculate the loading of MV/LV
transformers from three-phase voltage, current, active, and
reactive power measurements. In case of a mismatch between
measured and estimated values, NTLs may be considered. The
use of dedicated sensors for detecting fraud is also proposed by
comparing the measurements of a sensor with the aggregated
measurements of SMs behind the sensor [21].

IV. ASSET MANAGEMENT

Asset management is one of the most important chapters
in the operation of power systems. Poor asset management
can lead to increased costs and unreliability at the level
of production, transmission, and distribution. In this section,
three groups of asset management applications using SM data
analysis are discussed: outage management, remote switching,
and fault detection.

A. Unplanned Outage Management

An unplanned power outage is defined as an electricity
supply failure caused by short circuits, station failure, or
distribution line damage [1]. Outage management is the most
significant SM data application behind billing. SM can enable
automatic outage notifications by last-gasp messages enabling
utilities to be informed about outages without the need for
sufficient end-user calls. Moreover, SMs allow outage confir-
mation, i.e., verifying that there is an actual outage and not
single light-out problems, and restoration verification.

Several works in the literature focus on identifying the
outage location. The basic idea in [22] is the usage of multiple
SMs in a neighborhood. For a single service outage, neighbor
meters should operate normally. However, all meters can not
transfer metering data in case of a mass power outage. In
[23], additional measuring devices at the lines of the DN are
considered. Given the DN tree structure, an outage detection
method is developed by combining the use of real-time power
flow measurements on the edges with load forecasts at the
nodes.



The large-scale penetration of distributed renewable energy
sources (DRESs) in DNs is considered in [24]. According to
the authors, outage detection methods relying on end-users’
reports and SM last-gasp signals present poor performance
since DRESs provide power even during an outage. To this
end, a data-driven outage monitoring approach is proposed
based on the hypothesis that voltage measurements exhibit
significant statistical changes after outages.

B. Remote Switching

Besides remote reading, SM can offer to DSOs the possi-
bility of remote switching. By sending a remote signal to the
breaker of the SM, DSOs can connect/disconnect end-users
from the grid without the need of on-site personnel [25]. This
feature can be cost-efficient reducing labor costs. For example,
the DSO can remotely disconnect end-users that have delayed
their payments or do not have any contract and reconnect them
as problems have been resolved.

In [25], possible future applications are proposed. For
example, the DSO can disconnect selected end-users during
peak load crises avoiding overloading of the network lines.
Moreover, during cases of faults, reinforcement, or upgrading
of the network, the DSO needs to disconnect power from the
substation, and thus, all end-users under that substation lose
power supply. By remote switching, the disconnection of the
end-users is easier and it is even possible to supply a portion
of the affected ones from other available substations.

C. Fault Detection

SM data can be used to detect and locate specific types of
faults. For example, in [26], a high-impedance fault detection
method is developed based on the even harmonics present in
the high-frequency voltage data of SMs. In [27], inter-turn
winding faults in single-phase distribution transformers are
detected. Instead of measuring the transformer secondary volt-
age by sensors, the proposed method uses SM measurements.
Results obtained from simulations as well as experimental data
show that SM measurements can be utilized to achieve very
high detection accuracy while maintaining low costs.

V. POWER SYSTEM PLANNING

Power system planning in developing countries has become
more difficult due to the ever-increasing penetration of DRESs
and electric vehicles (EVs) into LV DN posing unprecedented
technical challenges and jeopardizing the reliable operation
of power systems. SM can play a pivotal role in aiding
DSOs prepare for future challenges and plan their network
development. In this section, works focused on PV/EV hosting
capacity and operating envelopes [28] are presented.

A. Hosting Capacity

As solar PV penetration continues to grow, technical chal-
lenges, such as overvoltage and congestion are expected to
occur. To this end, approaches to estimate PV penetration
limits for the long-term planning of the power system have
been investigated [29]. The extent to which LV DNs can host
solar PV is the hosting capacity.

In [29], a SM-driven method is introduced for the fast
estimation of the hosting capacity requiring no complex and
detailed network studies. Using SM data, a regression model
is trained to estimate the additional PV capacity that can be
hosted without causing voltages outside an upper limit. In
[30], [31], probabilistic tools are used to perform power flow
analyses for possible future PV integration scenarios. As long
as operational constraints are not exceeded, more PV units are
added to the DN. In this way, hosting capacity is determined.

Besides DRESs, EV hosting capacity has also been inves-
tigated since the expected increase in peak demand poses
significant technical challenges, such as asset congestion or
voltage drop issues [32]. The EV hosting capacity is assessed
in [32] by exploring multiple EV scenarios and considering
their time-varying behavior during the peak demand day.

B. Operating Envelopes

The high penetration of residential DRESs in DNs has
enabled households to provide bottom-up services through
aggregators. The use of operating envelopes, i.e., individual-
ized, time-varying import/export limits, has been proposed to
better facilitate such services while ensuring network integrity
and allowing more efficient short-term planning of the DN
[33]. The work of [28] proposes a framework for operating
envelopes in the presence of prosumers that operate their assets
using control schemes outside the self-consumption operation.
The prosumer’s intended operation is periodically submitted
and power flow analysis is performed by the DSO to check
for possible operational violations. If any violations occur,
dynamic operating limits are imposed on the prosumers.

VI. TOPOLOGY IDENTIFICATION

Topology identification and parameter estimation form the
basis for the operation and control of the DN with little or no
observability. Parameters, such as line impedance, and phase
grouping, are necessary for thorough analysis as well as for
applied control schemes, e.g., voltage regulation. However,
such information is sometimes not known or inaccurate in
DNs. Various methods utilizing SM data have been proposed
to tackle these issues.

A. Impedance Estimation

To enhance the observability of DNs, several methods focus
on impedance estimation of DN lines using SM data. In
[34], particle swarm optimization is utilized given the network
topology and active/reactive power measurements, whereas in
[35], a non-linear and non-convex optimization problem is
formed. Decoupled linear power flow equations are formulated
in [36] and a total least squares regression method is used. In
[37], the impedances of a three-phase LV feeder are deter-
mined by assuming the knowledge of additional information,
e.g., feeder topology, service cable parameters, etc. Eventually,
a multi-linear regression technique is used to exploit historical
SM time-series measurements to calculate the self and mutual
impedances of an LV feeder segment.



B. Phase Grouping

Phase grouping is the process of determining the phase
connection of end-users to obtain accurate DN models. Several
data-driven approaches based on SM data have been intro-
duced.

Mixed-integer programming (MIP) has been widely used. In
MIP approaches, optimization problems are formed. Specif-
ically, SM measurements and the distribution transformer
supply are required. On the basis of the law of conservation
of power the connection phase of each end-user is determined,
as the load measured at a feeder level must be equal to the
aggregated consumption of all SMs connected to that feeder
plus the unmetered load, i.e., street lights, and TLs. The
optimization aims to minimize the difference between the total
feeder demand and the transformer supply [38], [39].

Voltage measurements are also used for phase grouping.
In [40], [41], the Pearson correlation between an end-user’s
voltage time series and a reference voltage time series, i.e.,
the voltage of the transformer, is calculated. The end-user is
assigned to the reference phase with the highest correlation.
A similar approach is followed in [42], but instead of using
measurements at the substation downstream, the voltage of a
three-phase end-user is used as reference. This avoids using
additional measuring devices at the transformer level, but the
connection of a three-phase end-user must be known.

C. Connection Verification

The last topic concerns connection verification and detection
of switching actions/reconfigurations based on known topol-
ogy information that can be obtained through the geographic
information system (GIS).

A MIP-based topology identification model is proposed in
[43] to determine the topology configuration with weighted
least squares (WLS) using active power, reactive power, and
voltage measurements at each node. In [44], a generalized state
estimation approach for the identification of topology changes
is proposed. In [45], an algorithm for correcting connectivity
errors in the GIS representation of the DN topology is de-
veloped that leverages SM measurements. This algorithm is
based on voltage correlation to identify neighboring meters
and predict end-users’ upstream and downstream locations.

VII. POWER SYSTEM OPERATION AND ANALYSIS

Operational analysis applications refer to methods of ex-
amining and improving the performance of power systems,
reducing costs, and facilitating better data-driven decision-
making for proper day-to-day management. In this section,
the following concepts are analyzed: power quality, voltage
control, state estimation, model-free voltage calculation, DR,
and home energy management systems (HEMSs).

A. Power Quality

Power quality refers to the degree to which the voltage
characteristics of the power supply system, e.g., voltage mag-
nitude, frequency, harmonics, etc., conform to established

specifications. Poor power quality means that there are non-
stationary disturbances that can cause significant malfunction-
ing of the electrical equipment, financial losses, interruption
of production lines in industrial environments, and low quality
of the electricity that is delivered to consumers. SM data
can be valuable in the detection and classification of these
disturbances.

In [46], the authors use feature extraction and ML mod-
els, such as ANN and decision trees, to classify a number
of disturbances, e.g., voltages sags, swells, etc. The overall
system is developed to run on the edge inside SMs. Similarly,
in [47], a real-time power quality monitoring system for SM
level is proposed to detect and classify any type of disturbance.
Discrete wavelet transform is used for feature extraction and
a support vector machine (SVM) for segregation between
regular and abnormal data. The classification of disturbances
is based on a multi-class SVM.

B. Voltage Control

Since SMs allow two-way communication, enabling sending
and receiving commands in real-time, voltage monitoring and
control is one of the most likely new applications. SM data can
be used to detect in real-time if voltage regulation should be
applied to mitigate overvoltage/undervoltage violations. Such
control strategies could be on-load tap-changer (OLTC) Volt-
VAr control or capabilities of modern inverters.

In [48], the potential use of SM data as part of an OLTC
voltage control strategy is theoretically discussed aiming to
solve voltage problems caused by DRES. The SMs can provide
the necessary voltage measurements from all end-users to a
control center within a short time period to establish near
real-time control. Using these measurements, the voltage set
point for OLTC voltage control can be determined by means
of optimal power flow.

In [49], a new control scheme is developed, which applies
the voltage stability margin as the control objective, instead of
the traditional voltage magnitude. The voltage stability issues
are solved at the end-user side by reactive power support using
both utility-scale and residential DRESs.

C. State Estimation

State estimation is a digital processing scheme which
provides an estimation of the power system condition. The
estimator processes the available imperfect information and
produces the best possible estimate of the true state of the
system enhancing the observability of DNs.

In [50], a combination of WLS and the Levenberg-
Marquardt algorithm with an integrated power flow formula-
tion is used. The methodology is applicable for real-time state
estimation and uses information provided only by SMs already
installed at LV DNs. WLS is also used in [51], where a cloud-
based SM architecture allowing scalability and interoperability
among different off-the-shelf meters is proposed. Moreover, a
suitable design of the estimation algorithm using the uncer-
tainty propagation theory is proposed to improve accuracy. To
avoid inaccurate modeling due to measurement uncertainties,



which can lead the state estimation algorithms to deviate from
the true operating states, authors in [52] propose an interval
state estimation approach.

D. Model-free Voltage Calculations

Model-free voltage calculations refers to the process of
calculating voltages at network nodes without the need of elec-
trical models by capturing the nonlinear relationship, between
historical data (demand and voltages) and the corresponding
LV feeder. A model-free voltage calculation approach that uses
a deep neural network (DNN) using single-phase SM data is
proposed in [53]. The authors aim to replace the traditional
power flow analysis (where the topology of the distribution
network is known) with a DNN, since traditional power flow is
allegedly expensive, time-consuming, and not 100% accurate
due to errors in topology, phase grouping, impedances, neutral,
grounding, etc. To this end, the input of the model is the active
and reactive power measurements of all end-users and the
outputs are the voltages. For training purposes, active/reactive
power along voltage data are required. These can be obtained
through power flow analyses or through SMs. Once the
model has been trained, what-if scenarios can be evaluated by
simulating cases of interest, e.g., PV, battery energy storage
(BES) units, or EV penetration.

E. Demand Response / Home Energy Management Systems

DR refers to a change in the power consumption of a
user to match the demand with supply. Typically, a signal
is broadcasted by a utility to the user containing a price
change or a command for load shedding [54]. Based on this,
the end-user can adjust the power demand by postponing
selected activities that require large amounts of electric power.
A HEMS combines hardware and software components to
efficiently manage home energy under DR strategies.

Residential DR and HEMS have been widely investigated
in the literature. Various approaches rely on direct appliance
control by programming the set-points of heating, ventilation,
and air-conditioning units and water heaters to provide thermal
and hot water comfort [55], [56]. Appliance scheduling under
day-ahead pricing has also been investigated [57] to plan the
operation of specific appliances for the next day aiming to
minimize the cost and maximize thermal comfort. To extract
end-user habits and provide optimal day-ahead scheduling,
NILM has been integrated into HEMSs. In [58], SM data are
analyzed via a multi-task DNN, and appliance-level informa-
tion regarding consumption and operating status is extracted.
The results are integrated into a HEMS to create an efficient
and user-centered system by scheduling the appliance usage.

Similar energy management systems have been developed
for residential microgrids [59], [60] where DRESs, EVs,
and thermostatically controlled loads are adjusted aiming to
reduce the electricity bills for end-users without affecting
their comfort levels and also reduce the operation cost of the
microgrid and avoid new peaks that may appear after appliance
scheduling.

VIII. CONCLUSIONS

In this paper, a comprehensive overview of possible use
cases of SM data analytics for DN applications is conducted.
Aside from automated energy consumption metering, which is
the main application of SMs, there are more use cases for new
services and businesses. From the literature review, six key
categories for DN-oriented applications using SM data have
been identified, i.e., load forecasting, NTLs detection, asset
management, power system planning, topology identification,
and power system operation and analysis; the latest develop-
ments for each case have been reported and discussed. As the
number of installed SMs increases globally, it is expected that
DSOs will utilize SM data for new fields outside their core
business function.
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